Skip to main content

Advertisement

Log in

Microbiome–metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dysbiosis of the gut microbiome and related metabolites in chronic kidney disease (CKD) have been intimately associated with the prevalence of cardiovascular diseases. Unfortunately, thus far, there is a paucity of sufficient knowledge of gut microbiome and related metabolites on CKD progression partly due to the severely limited investigations. Using a 5/6 nephrectomized (NX) rat model, we carried out 16S rRNA sequence and untargeted metabolomic analyses to explore the relationship between colon’s microbiota and serum metabolites. Marked decline in microbial diversity and richness was accompanied by significant changes in 291 serum metabolites, which were mediated by altered enzymatic activities and dysregulations of lipids, amino acids, bile acids and polyamines metabolisms. Interestingly, CCr was directly associated with some microbial genera and polyamine metabolism. However, SBP was directly related to certain microbial genera and glycine-conjugated metabolites in CKD rats. Administration of poricoic acid A (PAA) and Poria cocos (PC) ameliorated microbial dysbiosis as well as attenuated hypertension and renal fibrosis. In addition, treatments with PAA and PC lowered serum levels of microbial-derived products including glycine-conjugated compounds and polyamine metabolites. Collectively, the present study confirmed the CKD-associated gut microbial dysbiosis and identified a novel dietary and therapeutic strategy to improve the gut microbial dysbiosis and the associated metabolomic disorders and retarded the progression of kidney disease in the rat model of CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252

    PubMed  Google Scholar 

  2. Schmidt M, Mansfield KE, Bhaskaran K, Nitsch D, Sorensen HT, Smeeth L, Tomlinson LA (2017) Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study. BMJ 356:j791

    PubMed  PubMed Central  Google Scholar 

  3. Pickard JM, Zeng MY, Caruso R, Nunez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279:70–89

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroeder BO, Backhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–1089

    CAS  PubMed  Google Scholar 

  5. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vaziri ND, Zhao YY, Pahl MV (2016) Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 31:737–746

    CAS  PubMed  Google Scholar 

  7. Coppo R (2018) The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol 33:53–61

    PubMed  Google Scholar 

  8. Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, Zhao YY (2019) Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 17:5

    PubMed  PubMed Central  Google Scholar 

  9. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315

    PubMed  Google Scholar 

  10. Simoes-Silva L, Araujo R, Pestana M, Soares-Silva I, Sampaio-Maia B (2018) The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacol Res 130:143–151

    CAS  PubMed  Google Scholar 

  11. Anders HJ, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83:1010–1016

    CAS  PubMed  Google Scholar 

  12. Vaziri ND (2012) CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 21:587–592

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rossi M, Campbell KL, Johnson DW, Stanton T, Vesey DA, Coombes JS, Weston KS, Hawley CM, McWhinney BC, Ungerer JP, Isbel N (2014) Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3-4 chronic kidney disease. Arch Med Res 45:309–317

    CAS  PubMed  Google Scholar 

  14. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455

    CAS  PubMed  Google Scholar 

  15. Griffin KA, Picken M, Bidani AK (1994) Method of renal mass reduction is a critical modulator of subsequent hypertension and glomerular injury. J Am Soc Nephrol 4:2023–2031

    CAS  PubMed  Google Scholar 

  16. Iyoda M, Shibata T, Hirai Y, Kuno Y, Akizawa T (2011) Nilotinib attenuates renal injury and prolongs survival in chronic kidney disease. J Am Soc Nephrol 22:1486–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang ZH, Vaziri ND, Wei F, Cheng XL, Bai X, Zhao YY (2016) An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure. Sci Rep 6:22151

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, Zhao YY (2015) Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep 5:14472

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang M, Chen DQ, Chen L, Cao G, Zhao H, Liu D, Vaziri ND, Guo Y, Zhao YY (2018) Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. Br J Pharmacol 175:2689–2708

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen H, Yang T, Wang MC, Chen DQ, Yang Y, Zhao YY (2018) Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-β-mediated Smad3 phosphorylation. Phytomedicine 42:207–218

    CAS  PubMed  Google Scholar 

  21. Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    CAS  PubMed  Google Scholar 

  23. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    CAS  PubMed  Google Scholar 

  24. Edgar R (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 074161. https://doi.org/10.1101/074161

  25. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  26. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen DQ, Cao G, Chen H, Argyopoulos CP, Yu H, Su W, Chen L, Samuels DC, Zhuang S, Bayliss GP, Zhao S, Yu XY, Vaziri ND, Wang M, Liu D, Mao JR, Ma SX, Zhao J, Zhang Y, Shang YQ, Kang H, Ye F, Cheng XH, Li XR, Zhang L, Meng MX, Guo Y, Zhao YY (2019) Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nat Commun 10:1476

    PubMed  PubMed Central  Google Scholar 

  29. Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY (2017) Gene and protein expressions and metabolomics exhibit activated redox signaling and Wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 12:505–521

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang ZH, Chen H, Vaziri ND, Mao JR, Zhang L, Bai X, Zhao YY (2016) Metabolomic signatures of chronic kidney disease of diverse etiologies in the rats and humans. J Proteome Res 15:3802–3812

    CAS  PubMed  Google Scholar 

  31. Zhao YY, Cheng XL, Wei F, Xiao XY, Sun WJ, Zhang Y, Lin RC (2012) Serum metabonomics study of adenine-induced chronic renal failure in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomarkers 17:48–55

    CAS  PubMed  Google Scholar 

  32. Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M (2017) Uremic toxin-producing gut microbiota in rats with chronic kidney disease. Nephron 135:51–60

    CAS  PubMed  Google Scholar 

  33. Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81:949–954

    CAS  PubMed  Google Scholar 

  34. Zeisel SH, Warrier M (2017) Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 37:157–181

    CAS  PubMed  Google Scholar 

  35. Zhao YY, Liu J, Cheng XL, Bai X, Lin RC (2012) Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta 413:642–649

    CAS  PubMed  Google Scholar 

  36. Zhao YY, Cheng XL, Wei F, Bai X, Tan XJ, Lin RC, Mei Q (2013) Intrarenal metabolomic investigation of chronic kidney disease and its TGF-β1 mechanism in induced-adenine rats using UPLC Q-TOF/HSMS/MSE. J Proteome Res 12:2692–2703

    Google Scholar 

  37. Zhao YY, Cheng XL, Wei F, Bai X, Lin RC (2012) Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique. Biomarkers 17:721–729

    CAS  PubMed  Google Scholar 

  38. Li Y, Sekula P, Wuttke M, Wahrheit J, Hausknecht B, Schultheiss UT, Gronwald W, Schlosser P, Tucci S, Ekici AB, Spiekerkoetter U, Kronenberg F, Eckardt KU, Oefner PJ, Kottgen A (2018) Genome-wide association studies of metabolites in patients with CKD identify multiple loci and illuminate tubular transport mechanisms. J Am Soc Nephrol 29:1513–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao YY, Feng YL, Du X, Xi ZH, Cheng XL, Wei F (2012) Diuretic activity of the ethanol and aqueous extracts of the surface layer of Poria cocos in rat. J Ethnopharmacol 144:775–778

    PubMed  Google Scholar 

  40. Feng YL, Lei P, Tian T, Yin L, Chen DQ, Chen H, Mei Q, Zhao YY, Lin RC (2013) Diuretic activity of some fractions of the epidermis of Poria cocos. J Ethnopharmacol 150:1114–1118

    PubMed  Google Scholar 

  41. Chen L, Cao G, Wang M, Feng YL, Chen DQ, Vaziri ND, Zhuang S, Zhao YY (2019) The matrix metalloproteinase-13 Inhibitor poricoic acid ZI ameliorates renal fibrosis by mitigating epithelial-mesenchymal transition. Mol Nutr Food Res 63:1900132

    Google Scholar 

  42. Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q (2013) Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS One 8:e59617

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao YY, Li HT, Feng YI, Bai X, Lin RC (2013) Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. J Ethnopharmacol 148:403–410

    CAS  PubMed  Google Scholar 

  44. Zhao YY, Lei P, Chen DQ, Feng YL, Bai X (2013) Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE. J Pharm Biomed Anal 81–82:202–209

    PubMed  Google Scholar 

  45. Miao H, Zhao YH, Vaziri ND, Tang DD, Chen H, Chen H, Khazaeli M, Tarbiat-Boldaji M, Hatami L, Zhao YY (2016) Lipidomics biomarkers of diet-induced hyperlipidemia and Its treatment with Poria cocos. J Agric Food Chem 64:969–979

    CAS  PubMed  Google Scholar 

  46. Chen DQ, Feng YL, Chen L, Liu JR, Wang M, Vaziri ND, Zhao YY (2019) Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/Axl-NF-κB/Nrf2 axis. Free Radic Biol Med 134:484–497

    CAS  PubMed  Google Scholar 

  47. Wang M, Chen DQ, Wang MC, Chen H, Chen L, Liu D, Zhao H, Zhao YY (2017) Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway. Phytomedicine 36:243–253

    CAS  PubMed  Google Scholar 

  48. Wang M, Chen DQ, Chen L, Zhao H, Liu D, Zhang ZH, Vaziri ND, Guo Y, Zhao YY, Cao G (2018) Novel RAS inhibitors poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via Wnt/β-catenin pathway and targeted phosphorylation of smad3 signaling. J Agric Food Chem 66:1828–1842

    CAS  PubMed  Google Scholar 

  49. Yang T, Richards EM, Pepine CJ, Raizada MK (2018) The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 14:442–456

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen H, Cao G, Chen DQ, Wang M, Vaziri ND, Zhang ZH, Mao JR, Bai X, Zhao YY (2016) Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biol 10:168–178

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen DQ, Chen H, Chen L, Vaziri ND, Wang M, Li XR, Zhao YY (2017) The link between phenotype and fatty acid metabolism in advanced chronic kidney disease. Nephrol Dial Transplant 32:1154–1166

    CAS  PubMed  Google Scholar 

  52. Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH (2016) Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 310:F857–F871

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, Kieffer DA, Adams SH, Martin RJ (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9:e114881

    PubMed  PubMed Central  Google Scholar 

  54. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology 17:733–738

    CAS  PubMed  Google Scholar 

  55. Gaastra W, Kusters JG, van Duijkeren E, Lipman LJ (2014) Escherichia fergusonii. Vet Microbiol 172:7–12

    CAS  PubMed  Google Scholar 

  56. Oh JY, Kang MS, An BK, Shin EG, Kim MJ, Kwon JH, Kwon YK (2012) Isolation and epidemiological characterization of heat-labile enterotoxin-producing Escherichia fergusonii from healthy chickens. Vet Microbiol 160:170–175

    PubMed  Google Scholar 

  57. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74:349–355

    CAS  PubMed  Google Scholar 

  58. Zeng YQ, Dai Z, Lu F, Lu Z, Liu X, Chen C, Qu P, Li D, Hua Z, Qu Y, Zou C (2016) Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget 7:17468–17478

    PubMed  PubMed Central  Google Scholar 

  59. Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, Pascual J, Ley RE, Spector TD, Bell JT, Menni C (2015) Gut-microbiota-metabolite axis in early renal function decline. PLoS One 10:e0134311

    PubMed  PubMed Central  Google Scholar 

  60. Nazzal L, Roberts J, Singh P, Jhawar S, Matalon A, Gao Z, Holzman R, Liebes L, Blaser MJ, Lowenstein J (2017) Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease. Nephrol Dial Transplant 32:1809–1817

    CAS  PubMed  Google Scholar 

  61. Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K, Tomioka Y, Ito S, Soga T, Abe T (2015) Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol 26:1787–1794

    CAS  PubMed  Google Scholar 

  62. Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7:1445

    PubMed  PubMed Central  Google Scholar 

  63. Jiang S, Xie S, Lv D, Wang P, He H, Zhang T, Zhou Y, Lin Q, Zhou H, Jiang J, Nie J, Hou F, Chen Y (2017) Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep 7:2870

    PubMed  PubMed Central  Google Scholar 

  64. Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I, Burk R, Davies KP (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44:399–407

    PubMed  PubMed Central  Google Scholar 

  65. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole-Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia-Pereira F, Johnson RD, Pepine CJ, Raizada MK (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120:312–323

    CAS  PubMed  Google Scholar 

  66. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    CAS  PubMed  Google Scholar 

  67. Li YN, Huang F, Cheng HJ, Li SY, Liu L, Wang LY (2014) Intestine-derived Clostridium leptum induces murine tolerogenic dendritic cells and regulatory T cells in vitro. Hum Immunol 75:1232–1238

    CAS  PubMed  Google Scholar 

  68. Besouw M, Cornelissen E, Cassiman D, Kluijtmans L, van den Heuvel L, Levtchenko E (2014) Carnitine profile and effect of suppletion in children with renal fanconi syndrome due to cystinosis. JIMD Rep 16:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Araujo MV, Hong BY, Fava PL, Khan S, Burleson JA, Fares G, Samson W, Strausbaugh LD, Diaz PI, Ioannidou E (2015) End stage renal disease as a modifier of the periodontal microbiome. BMC Nephrol 16:80

    PubMed  PubMed Central  Google Scholar 

  70. Tain YL, Lee WC, Wu KLH, Leu S, Chan JYH (2018) Resveratrol prevents the development of hypertension programmed by maternal Plus post-weaning high-fructose consumption through modulation of oxidative stress, nutrient-sensing signals, and gut microbiota. Mol Nutr Food Res 62:e1800066

    Google Scholar 

  71. Sindhu KK (2016) Uremic toxins: some thoughts on acrolein and spermine. Ren Fail 38:1755–1758

    CAS  PubMed  Google Scholar 

  72. Goek ON, Prehn C, Sekula P, Romisch-Margl W, Doring A, Gieger C, Heier M, Koenig W, Wang-Sattler R, Illig T, Suhre K, Adamski J, Kottgen A, Meisinger C (2013) Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol Dial Transplant 28:32131–32138

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (nos. 81872985, 81673578, 81603271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Yong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1872 kb)

Supplementary material 2 (DOCX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YL., Cao, G., Chen, DQ. et al. Microbiome–metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell. Mol. Life Sci. 76, 4961–4978 (2019). https://doi.org/10.1007/s00018-019-03155-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03155-9

Keywords

Navigation