Skip to main content
Log in

Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Nanoemulsions were successfully developed through high-pressure homogenization. The layer-by-layer electrostatic technique was used for the subsequent deposition of a chitosan and alginate polyelectrolyte layers, thus leading to the development of a multilayer nanoemulsion. The effect of polyelectrolytes concentration in the development of multilayer nanoemulsions was evaluated in terms of hydrodynamic diameter (Hd), polydispersity index (PdI), zeta potential (Zp), and curcumin encapsulation efficiency. The interactions between polyelectrolytes and nanoemulsion were further analyzed using Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance (QCM), while curcumin degradation was determined through the evaluation of the antioxidant capacity of the nanosystems. Results showed an encapsulation efficiency of 99.8 ± 0.8% and a loading capacity of 0.53 ± 0.03% (w/w). The presence of the multilayers leads to an increase of the Hd of the nanosystems, from 80.0 ± 0.9 nm (nanoemulsion) to 130.1 ± 1.5 nm (multilayer nanoemulsion). Release profiles were evaluated at different conditions, fitting a linear superposition model to experimental data suggests an anomalous behavior, being the relaxation of the surfactant and polyelectrolytes the rate-determining phenomena in curcumin release. The developed nanosystems showed great potential for the incorporation of lipophilic bioactive compounds, in view of their application in food and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamczak, M., Kupiec, A., Jarek, E., Szczepanowicz, K., & Warszyński, P. (2014). Preparation of the squalene-based capsules by membrane emulsification method and polyelectrolyte multilayer adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 147–152.

    CAS  Google Scholar 

  • Anton, N., & Vandamme, T. (2011). Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 28(5), 978–985.

    CAS  PubMed  Google Scholar 

  • Artiga-Artigas M, Lanjari-Pérez Y, Martín-Belloso O. (2018). Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 266:466–474. https://doi.org/10.1016/j.foodchem.2018.06.043

    CAS  PubMed  Google Scholar 

  • Atsumi, O., Akiko, M., Keiji, S., & Kenshiro, T. (1994). Dynamic properties of soluble monolayer of sodium dodecyl sulfate (SDS) on aqueous solution. Japanese Journal of Applied Physics, 33(10B), L1468.

    Google Scholar 

  • Azevedo, M. A., Bourbon, A. I., Vicente, A. A., & Cerqueira, M. A. (2014). Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 71, 141–146.

    CAS  PubMed  Google Scholar 

  • Berens, A. R., & Hopfenberg, H. B. (1978). Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer, 19(5), 489–496.

    CAS  Google Scholar 

  • Berton-Carabin, C. C., Ropers, M.-H., & Genot, C. (2014). Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety, 13(5), 945–977.

    CAS  Google Scholar 

  • Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118.

    CAS  Google Scholar 

  • Bourbon, A. I., Pinheiro, A. C., Carneiro-da-Cunha, M. G., Pereira, R. N., Cerqueira, M. A., & Vicente, A. A. (2015). Development and characterization of lactoferrin-GMP nanohydrogels: evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 48, 292–300.

    CAS  Google Scholar 

  • Burke, S. E., & Barrett, C. J. (2003a). Acid−base equilibria of weak polyelectrolytes in multilayer thin films. Langmuir, 19(8), 3297–3303.

    CAS  Google Scholar 

  • Burke, S. E., & Barrett, C. J. (2003b). pH-responsive properties of multilayered poly(l-lysine)/hyaluronic acid surfaces. Biomacromolecules, 4(6), 1773–1783.

    CAS  PubMed  Google Scholar 

  • Carreira, A. S., Gonçalves, F. A. M. M., Mendonça, P. V., Gil, M. H., & Coelho, J. F. J. (2010). Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers, 80(3), 618–630.

    CAS  Google Scholar 

  • Cerqueira, M., Pinheiro, A., Silva, H., Ramos, P., Azevedo, M., Flores-López, M., Rivera, M., Bourbon, A., Ramos, Ó., & Vicente, A. (2014). Design of bio-nanosystems for oral delivery of functional compounds. Food Engineering Reviews, 6(1-2), 1–19.

    CAS  Google Scholar 

  • Choi, A.-J., Kim, C.-J., Cho, Y.-J., Hwang, J.-K., & Kim, C.-T. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 1119–1126.

    CAS  Google Scholar 

  • Cui, J., van Koeverden, M. P., Müllner, M., Kempe, K., & Caruso, F. (2014). Emerging methods for the fabrication of polymer capsules. Advances in Colloid and Interface Science, 207, 14–31.

    CAS  PubMed  Google Scholar 

  • Delcea, M., Möhwald, H., & Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63(9), 730–747.

    CAS  PubMed  Google Scholar 

  • Donsì, F., Sessa, M., & Ferrari, G. (2011). Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Industrial & Engineering Chemistry Research, 51(22), 7606–7618.

    Google Scholar 

  • EC. (2011). Plastic materials and articles intended to come into contact with food. In E. Commission (Ed.), Commission Regulation (EU) No 10/2011. Official Journal of the European Union.

  • EFSA. (2010). Call for scientific data on food additives permitted in the EU and belonging to the functional classes of emulsifiers, stabilisers and gelling agents.

    Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6, 628–647.

    CAS  Google Scholar 

  • Food and Drug Administration (2019) 21CFR172.822. Code of federal regulations, title 21, volume 3. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.822. Accessed 11 Nov 2019.

  • Friedrich, R. B., Kann, B., Coradini, K., Offerhaus, H. L., Beck, R. C. R., & Windbergs, M. (2015). Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. European Journal of Pharmaceutical Sciences, 78, 204–213.

    CAS  PubMed  Google Scholar 

  • Gordon, V., Marom, G., & Magdassi, S. (2014). Formation of hydrophilic nanofibers from nanoemulsions through electrospinning. International Journal of Pharmaceutics, 478(1), 172–179.

    PubMed  Google Scholar 

  • Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chemistry, 171(0), 117–122.

    CAS  PubMed  Google Scholar 

  • Guzey, D., & McClements, D. J. (2006). Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science, 128-130, 227–248.

    CAS  PubMed  Google Scholar 

  • Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577–585.

    CAS  Google Scholar 

  • Hu, K., Huang, X., Gao, Y., Huang, X., Xiao, H., & McClements, D. J. (2015). Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chemistry, 182, 275–281.

    CAS  PubMed  Google Scholar 

  • Kaur, K., Kumar, R., & Mehta, S. K. (2015). Nanoemulsion: a new medium to study the interactions and stability of curcumin with bovine serum albumin. Journal of Molecular Liquids, 209, 62–70.

    CAS  Google Scholar 

  • Khurana, A., & Ho, C.-T. (1988). High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in curcuma longa L. Journal of Liquid Chromatography, 11(11), 2295–2304.

    CAS  Google Scholar 

  • Kim, H.-J., Kim, D.-J., Karthick, S. N., Hemalatha, K. V., Raj, C. J., Ok, S., & Choe, Y. (2013). Curcumin dye extracted from curcuma longa L. Used as sensitizers for efficient dye-sensitized solar cells. International Journal of Electrochemical Science, 8, 8320–8328.

    CAS  Google Scholar 

  • Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541.

    CAS  PubMed  Google Scholar 

  • Lee, S.J., Choi S.J , Li, Y., Decker, E.A., McClements, D.J. (2011) Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. Journal of Agricultural and Food Chemistry, 59, 415–427

    CAS  PubMed  Google Scholar 

  • Li, P., Dai, Y.-N., Zhang, J.-P., Wang, A.-Q., & Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. International Journal of Biomedical Science : IJBS, 4(3), 221–228.

    CAS  PubMed  Google Scholar 

  • Li, Y., Hu, M., Xiao, H., Du, Y., Decker, E. A., & McClements, D. J. (2010). Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. European Journal of Pharmaceutics and Biopharmaceutics, 76(1), 38–47.

    CAS  PubMed  Google Scholar 

  • Li, M., Zhang, F., Liu, Z., Guo, X., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 1–8.

  • Li, X., Wu, G., Qi, X., Zhang, H., Wang, L., Qian, H. (2019). Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 274, 620–628

    CAS  PubMed  Google Scholar 

  • Liechty, W. B., Scheuerle, R. L., & Peppas, N. A. (2013). Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino)ethyl methacrylate. Polymer, 54(15), 3784–3795.

    CAS  Google Scholar 

  • Liu, Y., Cai, Y., Jiang, X., Wu, J., & Le, X. (2016). Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocolloids, 52, 564–572.

    CAS  Google Scholar 

  • Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A. O., Krueger, C. G., Gunasekaran, S., & Reed, J. D. (2010). Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2(2), 99–106.

    CAS  Google Scholar 

  • Malvern, I. (2011). Dynamic light scattering common terms defined. In M. Instruments (Ed.). Worcestershire, UK.

  • Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 153, 361–370.

    CAS  PubMed  Google Scholar 

  • Martins, G. V., Mano, J. F., & Alves, N. M. (2010). Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 80(2), 570–573.

    CAS  Google Scholar 

  • Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635.

    CAS  Google Scholar 

  • McClements, D. J., & Xiao, H. (2012). Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food & Function, 3(3), 202–220.

    CAS  Google Scholar 

  • Milcovich, G., & Asaro, F. (2012). Insights into catanionic vesicles thermal transition by NMR spectroscopy. In V. Starov & P. Griffiths (Eds.), UK Colloids 2011 (Vol. 139, pp. 35–38). Berlin Heidelberg: Springer.

    Google Scholar 

  • Mohan, P. R. K., Sreelakshmi, G., Muraleedharan, C. V., & Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vibrational Spectroscopy, 62, 77–84.

    CAS  Google Scholar 

  • Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1–2), 113-142.

  • Morais Diane, J. M., & Burgess, J. (2014). Vitamin E nanoemulsions characterization and analysis. International Journal of Pharmaceutics, 465(1–2), 455–463.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., & Kundu, P. P. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. International Journal of Biological Macromolecules, 72, 640–648.

    CAS  PubMed  Google Scholar 

  • Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142(0), 57–63.

    CAS  Google Scholar 

  • Paruchuri, V. K., Nalaskowski, J., Shah, D. O., & Miller, J. D. (2006). The effect of cosurfactants on sodium dodecyl sulfate micellar structures at a graphite surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(3), 157–163.

    CAS  Google Scholar 

  • Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396(1–2), 153–166.

    CAS  Google Scholar 

  • Pinheiro, A. C., Bourbon, A. I., Quintas, M. A. C., Coimbra, M. A., & Vicente, A. A. (2012). K-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science & Emerging Technologies, 16(0), 227–232.

    CAS  Google Scholar 

  • Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Maricato, É., Nunes, C., Coimbra, M. A., & Vicente, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 115, 1–9.

    CAS  PubMed  Google Scholar 

  • Pinheiro, A. C., Coimbra, M. A., & Vicente, A. A. (2016). In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids, 52, 460–467.

    CAS  Google Scholar 

  • Plaza-Oliver, M., Baranda, J. F., Rodríguez Robledo, V., Castro-Vázquez, L., Gonzalez-Fuentes, J., Marcos, P., Lozano, M. V., Santander-Ortega, M. J., & Arroyo-Jimenez, M. M. (2015). Design of the interface of edible nanoemulsions to modulate the bioaccessibility of neuroprotective antioxidants. International Journal of Pharmaceutics, 490(1–2), 209–218.

    CAS  PubMed  Google Scholar 

  • Priyadarsini, K. I. (2009). Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(2), 81–95.

    CAS  Google Scholar 

  • Priyadarsini, K. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091–20112.

    PubMed  PubMed Central  Google Scholar 

  • Qian, C., Decker, E.A., Xiao, H., McClements, D.J.. (2012) Physical and chemical stability of b-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132, 1221–1229

    CAS  PubMed  Google Scholar 

  • Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000–1008.

    CAS  Google Scholar 

  • Rao, J., & McClements, D. J. (2013). Optimization of lipid nanoparticle formation for beverage applications: influence of oil type, cosolvents, and cosurfactants on nanoemulsion properties. Journal of Food Engineering, 118(2), 198–204.

    CAS  Google Scholar 

  • Rufino, M. d. S. M., Alves, R. E., Brito, E. S. d., Morais, S. M. d., Sampaio, C. d. G., Pérez - Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. In Embrapa Agroindústria Tropical. Comunicado técnico (Ed.), (Vol. 2015). Fortaleza: Embrapa Agroindústria Tropical.

  • Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 54(1), 812–820.

    CAS  Google Scholar 

  • Saberi, A. H., Zeeb, B., Weiss, J., & McClements, D. J. (2015). Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition. Journal of Colloid and Interface Science, 455, 172–178.

    CAS  PubMed  Google Scholar 

  • Sari, T. P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M., & Athira, S. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids, 43, 540–546.

    CAS  Google Scholar 

  • Sharipova, A. A., Aidarova, S. B., Grigoriev, D., Mutalieva, B., Madibekova, G., Tleuova, A., & Miller, R. (2016). Polymer–surfactant complexes for microencapsulation of vitamin E and its release. Colloids and Surfaces B: Biointerfaces, 137, 152–157.

    CAS  PubMed  Google Scholar 

  • Shi, X., Du, Y., Sun, L., Zhang, B., & Dou, A. (2006). Polyelectrolyte complex beads composed of water-soluble chitosan/alginate: characterization and their protein release behavior. Journal of Applied Polymer Science, 100(6), 4614–4622.

    CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. Journal of Food Engineering, 102(2), 130–135.

    CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology, 5(3), 854–867.

    CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015a). Chapter 56 - Nanoemulsion-based systems for food applications. In B. I. Kharisov (Ed.), CRC concise encyclopedia of nanotechnology. Boca Raton: CRC Press by Taylor and Francis Group.

    Google Scholar 

  • Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015b). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89–98.

    CAS  Google Scholar 

  • Siviero, A., Gallo, E., Maggini, V., Gori, L., Mugelli, A., Firenzuoli, F., & Vannacci, A. (2015). Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine, 5(2), 57–70.

    Google Scholar 

  • Souza, B. W. S., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287–292.

    CAS  Google Scholar 

  • Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., & De Faveri, D. M. (2013). Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 114(2), 207–214.

    CAS  Google Scholar 

  • Szczepanowicz, K., Bazylińska, U., Pietkiewicz, J., Szyk-Warszyńska, L., Wilk, K. A., & Warszyński, P. (2015). Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: from controlling physical state and stability to biological impact. Advances in Colloid and Interface Science, 222, 678–691.

    CAS  PubMed  Google Scholar 

  • Tang, S. Y., Manickam, S., Wei, T. K., & Nashiru, B. (2012). Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 19(2), 330–345.

    CAS  PubMed  Google Scholar 

  • Tegge, G. (1989). Yalpani, M.: Polysaccharides - SYNTHESIS, MODIFICATIONS AND STRUCTURE/PROPERTY RELATIONS (Vol. 36 of the series “Studies in Organic Chemistry”). Elsevier Science Publishers, Amsterdam – Oxford – New York – Tokyo 1988. ISBN 0–444–43022–9. 522 pages, with over 40 tables and 130 schemes and illustrations. Price US $ 171,-; Dfl 325,-. Available from : P.O. Box 211, 1000 AE Amsterdam (The Netherlands) or P.O. Box 1663, Grand Central Station. New York, NY 10163 (U.S.A.). Starch - Stärke, 41(6), 244-244.

  • Tomren, M. A., Másson, M., Loftsson, T., & Tønnesen, H. H. (2007). Studies on curcumin and curcuminoids: XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin. International Journal of Pharmaceutics, 338(1–2), 27–34.

    CAS  PubMed  Google Scholar 

  • Troncoso, E., Aguilera, J. M., & McClements, D. J. (2012). Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. Journal of Colloid and Interface Science, 382(1), 110–116.

    CAS  PubMed  Google Scholar 

  • Vachoud, L., Zydowicz, N., & Domard, A. (2000). Physicochemical behaviour of chitin gels. Carbohydrate Research, 326(4), 295–304.

    CAS  PubMed  Google Scholar 

  • Viana, R. B., da Silva, A. B. F., & Pimentel, A. S. (2012). Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Advances in Physical Chemistry, 2012, 14.

    Google Scholar 

  • Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., & Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573–574, 459–465.

    PubMed  Google Scholar 

  • Yang, H., Irudayaraj, J., & Paradkar, M. M. (2005). Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry, 93(1), 25–32.

    CAS  Google Scholar 

  • Yu, H., Shi, K., Liu, D., & Huang, Q. (2012). Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chemistry, 131(1), 48–54.

    CAS  Google Scholar 

  • Yucel, C., Quagliariello, V., Iaffaioli, R. V., Ferrari, G., & Donsì, F. (2015). Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake. International Journal of Pharmaceutics, 494(1), 357–369.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Du, J., Duan, Y., Zang, Y., Zhang, H., Yang, C., Cao, F., & Zhai, G. (2012). Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization. Colloids and Surfaces B: Biointerfaces, 97, 101–108.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors Hélder D. Silva and Ana C. Pinheiro (SFRH/BD/81288/2011, SFRH/BPD/101181/2014, respectively) are the recipients of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, Portugal). The authors would like to acknowledge Rui Fernandes from IBMC, University of Porto, for assistance in taking the TEM pictures and Estefanía López Silva, from CACTI, University of Vigo for assistance in the FTIR analysis. The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project “BioInd–Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,” REF.NORTE-07-0124- FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. We also thank the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1). This work was supported by the “CARINA” project for the safeness, sustainability, and competitiveness of agro-food productions of Campania Region. The support of EU Cost Action FA1001 is gratefully acknowledged. The authors also acknowledge Stepan for providing the Neobee 1053 oil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Cerqueira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, H.D., Cerqueira, M.A., Donsì, F. et al. Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food Bioprocess Technol 13, 67–87 (2020). https://doi.org/10.1007/s11947-019-02372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02372-1

Keywords

Navigation