Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone marrow dendritic cells support the survival of chronic lymphocytic leukemia cells in a CD84 dependent manner

Abstract

Chronic lymphocytic leukemia (CLL) is a malignancy of mature B lymphocytes. The microenvironment of the CLL cells is a vital element in the regulation of the survival of these malignant cells. CLL cell longevity is dependent on external signals, originating from cells in their microenvironment including secreted and surface-bound factors. Dendritic cells (DCs) play an important part in tumor microenvironment, but their role in the CLL bone marrow (BM) niche has not been studied. We show here that CLL cells induce accumulation of bone marrow dendritic cells (BMDCs). Depletion of this population attenuates disease expansion. Our results show that the support of the microenvironment is partly dependent on CD84, a cell surface molecule belonging to the Signaling Lymphocyte Activating Molecule (SLAM) family of immunoreceptors. Our results suggest a novel therapeutic strategy whereby eliminating BMDCs or blocking the CD84 expressed on these cells may reduce the tumor load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The RNAseq results were submitted to GEO (GSE119115).

References

  1. Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol. 2010;20:377–83.

    Article  CAS  PubMed  Google Scholar 

  2. Montserrat E, Moreno C. Chronic lymphocytic leukaemia: a short overview. Ann Oncol. 2008;19(Suppl 7):vii320–25.

    Article  PubMed  Google Scholar 

  3. Caligaris-Cappio F, Hamblin TJ. B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol. 1999;17:399–408.

    Article  CAS  PubMed  Google Scholar 

  4. Kipps TJ. Chronic lymphocytic leukemia. Curr Opin Hematol. 1998;5:244–53.

    Article  CAS  PubMed  Google Scholar 

  5. Gale RP, Caligaris-Cappio F, Dighiero G, Keating M, Montserrat E, Rai K. Recent progress in chronic lymphocytic leukemia. International Workshop on chronic Lymphocytic Leukemia. Leukemia. 1994;8:1610–4.

    CAS  PubMed  Google Scholar 

  6. Binet JL, Leporrier M, Dighiero G, Charron D, Dathis P, Vaugier G, et al. Clinical staging system for chronic lymphocytic-leukemia—prognostic significance. Cancer. 1977;40:855–64.

    Article  CAS  PubMed  Google Scholar 

  7. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46:219–34.

    Article  CAS  PubMed  Google Scholar 

  8. Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta. 2016;1863:471–82.

    Article  CAS  PubMed  Google Scholar 

  9. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burger JA. No cell is an island unto itself: the stromal microenvironment in chronic lymphocytic leukemia. Leuk Res. 2007;31:887–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ramsay AD, Rodriguez-Justo M. Chronic lymphocytic leukaemia-the role of the microenvironment pathogenesis and therapy. Br J Haematol. 2013;162:15–24.

    Article  CAS  PubMed  Google Scholar 

  12. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood. 1998;91:2387–96.

    Article  CAS  PubMed  Google Scholar 

  13. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37.

    Article  PubMed  CAS  Google Scholar 

  14. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol. 2008;9:388–95.

    Article  CAS  PubMed  Google Scholar 

  15. Karthaus N, Torensma R, Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 2012;181:733–42.

    Article  CAS  PubMed  Google Scholar 

  16. Calpe S, Wang NH, Romero X, Berger SB, Lanyi A, Engel P, et al. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol. 2008;97:177–250.

    Article  CAS  PubMed  Google Scholar 

  17. Martin M, Romero X, de la Fuente MA, Tovar V, Zapater N, Esplugues E, et al. CD84 functions as a homophilic adhesion molecule and enhances IFN-gamma secretion: adhesion is mediated by Ig-like domain 1. J Immunol. 2001;167:3668–76.

    Article  CAS  PubMed  Google Scholar 

  18. Romero X, Zapater N, Calvo M, Kalko SG, de la Fuente MA, Tovar V, et al. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. J Immunol. 2005;174:7033–42.

    Article  CAS  PubMed  Google Scholar 

  19. Yan QR, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW, et al. Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci USA. 2007;104:10583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Binsky-Ehrenreich I, Marom A, Sobotta MC, Shvidel L, Berrebi A, Hazan-Halevy I, et al. CD84 is a survival receptor for CLL cells. Oncogene. 2014;33:1006–16.

    Article  CAS  PubMed  Google Scholar 

  21. Marom A, Barak AF, Kramer MP, Lewinsky H, Binsky-Ehrenreich I, Cohen S, et al. CD84 mediates CLL-microenvironment interactions. Oncogene. 2017;36:628–38.

    Article  CAS  PubMed  Google Scholar 

  22. Lewinsky H, Barak AF, Huber V, Kramer MP, Radomir L, Sever L, et al. CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. J Clin Investig. 2018;128:5465–78.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25:1452–8.

    Article  PubMed  Google Scholar 

  24. Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM, et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia. 2014;28:2005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40:642–56.

    Article  CAS  PubMed  Google Scholar 

  26. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.

    Article  CAS  PubMed  Google Scholar 

  27. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–7.

    Article  CAS  PubMed  Google Scholar 

  28. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cabanas C, Sanchez-Madrid F. CD11c (leukocyte integrin CR4 alpha subunit). J Biol Regul Homeost Agents. 1999;13:134–6.

    CAS  PubMed  Google Scholar 

  30. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D, et al. Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression. Cell Rep. 2016;14:1748–60.

    Article  CAS  PubMed  Google Scholar 

  32. Birnberg T, Bar-On L, Sapoznikov A, Caton ML, Cervantes-Barragan L, Makia D, et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity. 2008;29:986–97.

    Article  CAS  PubMed  Google Scholar 

  33. Zlotnikov-Klionsky Y, Nathansohn-Levi B, Shezen E, Rosen C, Kagan S, Bar-On L, et al. Perforin-positive dendritic cells exhibit an immuno-regulatory role in metabolic syndrome and autoimmunity. Immunity. 2015;43:776–87.

    Article  CAS  PubMed  Google Scholar 

  34. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity. 2002;17:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sapoznikov A, Jung S. Probing in vivo dendritic cell functions by conditional cell ablation. Immunol Cell Biol. 2008;86:409–15.

    Article  CAS  PubMed  Google Scholar 

  36. Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005;202:919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell. 2012;21:402–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011;186:6905–13.

    Article  CAS  PubMed  Google Scholar 

  40. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121:734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J, et al. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity. 2010;32:253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA. 1997;94:12053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brockschnieder D, Pechmann Y, Sonnenberg-Riethmacher E, Riethmacher D. An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis. 2006;44:322–7.

    Article  CAS  PubMed  Google Scholar 

  45. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  46. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  47. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204:171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank members of the Shachar lab for fruitful discussion and support. IS is the incumbent of the Dr Morton and Ann Kleiman Professorial Chair. This research was supported by the DKFZ-MOST cooperation in cancer research, ERA-NET TRANSCAN-2 program JTC 2014–project FIRE-CLL and the Binational Science Foundation (BSF) grant no 711979. This research was performed without the support of the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

AFB—designed research, performed research, analyzed data and wrote the paper. HL—designed research, performed research and analyzed data. MP—designed research, performed research and analyzed data. VH—designed research, performed research and analyzed data. LR—designed research, performed research and analyzed data. MPK—designed research, performed research and analyzed data. LS—performed research, analyzed data. YW—designed research and contributed vital reagent. MS—designed research and contributed vital reagent. YH—designed research and contributed vital reagent. SJ—designed research, contributed vital reagent and wrote the paper. SB-H—designed research, performed research, analyzed data. IS—designed research, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Idit Shachar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barak, A.F., Lewinsky, H., Perpinial, M. et al. Bone marrow dendritic cells support the survival of chronic lymphocytic leukemia cells in a CD84 dependent manner. Oncogene 39, 1997–2008 (2020). https://doi.org/10.1038/s41388-019-1121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1121-y

Search

Quick links