Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF1α-driven NFκB signaling

Abstract

Most of the mechanisms governing apoptotic and non-apoptotic cell death are regulated independently. However, cells may experience various stresses that lead to both apoptotic and non-apoptotic cell death. In particular, cancer cells require a program that simultaneously avoids these forms of cell death, but the mechanism by which they are able to do so is currently unclear. Here, we show that ABC transporter subfamily B member 7 (ABCB7), one of the mitochondrial iron transporters, induces the hypoxia-independent accumulation of hypoxia-inducible factor 1 alpha by controlling intracellular iron homeostasis and inhibits both apoptotic and non-apoptotic cell death. Mechanistically, ABCB7 mitigates non-apoptotic cell death by reducing levels of mitochondrial reactive oxygen species. ABCB7 also suppresses apoptosis by inhibiting the expression of leucine zipper downregulated in cancer 1, an inhibitor of nuclear factor-kappa B signaling. Therefore, our results support that ABCB7 is crucial in controlling both apoptotic and non-apoptotic cell death and indicate that the fine-tuning of intracellular iron homeostasis may be a novel anticancer strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    Article  CAS  PubMed  Google Scholar 

  2. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1:27–42.

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, et al. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat. 2016;27:14–29.

    Article  CAS  PubMed  Google Scholar 

  4. Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat. 2003;6:71–84.

    Article  CAS  PubMed  Google Scholar 

  5. Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. Biochim Biophys Acta. 2010;1797:961–7.

    Article  CAS  PubMed  Google Scholar 

  6. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochem (Mosc). 2005;70:200–14.

    Article  CAS  Google Scholar 

  7. Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 2014;20:353–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaedler TA, Faust B, Shintre CA, Carpenter EP, Srinivasan V, van Veen HW, et al. Structures and functions of mitochondrial ABC transporters. Biochem Soc Trans. 2015;43:943–51.

    Article  CAS  PubMed  Google Scholar 

  9. Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer. 2004;4:592–603.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014;21:39–49.

    Article  CAS  PubMed  Google Scholar 

  11. Letai A. Cell death and cancer therapy: don’t forget to kill the cancer cell! Clin Cancer Res. 2015;21:5015–20.

    Article  CAS  PubMed  Google Scholar 

  12. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.

    Article  CAS  PubMed  Google Scholar 

  13. Paul VD, Lill R. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim Biophys Acta. 2015;1853:1528–39.

    Article  CAS  PubMed  Google Scholar 

  14. Zutz A, Gompf S, Schagger H, Tampe R. Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta. 2009;1787:681–90.

    Article  CAS  PubMed  Google Scholar 

  15. Piret JP, Mottet D, Raes M, Michiels C. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci. 2002;973:443–7.

    Article  CAS  PubMed  Google Scholar 

  16. Depoix CL, de Selliers I, Hubinont C, Debieve F. HIF1A and EPAS1 potentiate hypoxia-induced upregulation of inhibin alpha chain expression in human term cytotrophoblasts in vitro. Mol Hum Reprod. 2017;23:199–209.

    CAS  PubMed  Google Scholar 

  17. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458–65.

    Article  CAS  PubMed  Google Scholar 

  18. Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-alpha hydroxylation via VHL inhibition. Nat Commun. 2016;7:13312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pumiglia KM, Decker SJ. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 1997;94:448–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilkinson MG, Millar JB. Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J. 2000;14:2147–57.

    Article  CAS  PubMed  Google Scholar 

  21. Shah YM, Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology. 2014;146:630–42.

    Article  CAS  PubMed  Google Scholar 

  22. Tenopoulou M, Kurz T, Doulias PT, Galaris D, Brunk UT. Does the calcein-AM method assay the total cellular ‘labile iron pool’ or only a fraction of it? Biochemical J. 2007;403:261–6.

    Article  CAS  Google Scholar 

  23. Kaur D, Lee D, Ragapolan S, Andersen JK. Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: implications for Parkinson’s disease. Free Radic Biol Med. 2009;46:593–8.

    Article  CAS  PubMed  Google Scholar 

  24. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50.

    Article  CAS  PubMed  Google Scholar 

  25. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38.

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Simcox J, Mitchell TC, Jones D, Cox J, Luo B, et al. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J. 2013;27:2845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hung HI, Schwartz JM, Maldonado EN, Lemasters JJ, Nieminen AL. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. J Biol Chem. 2013;288:677–86.

    Article  CAS  PubMed  Google Scholar 

  28. Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol. 2004;173:2976–84.

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Qiu JH, Zhang LL, Luo XD. Adrenomedullin promotes human endothelial cell proliferation via HIF-1alpha. Mol Cell Biochem. 2012;365:263–73.

    Article  CAS  PubMed  Google Scholar 

  30. Glassford AJ, Yue P, Sheikh AY, Chun HJ, Zarafshar S, Chan DA, et al. HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab. 2007;293:E1590–1596.

    Article  CAS  PubMed  Google Scholar 

  31. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6:485–95.

    Article  CAS  PubMed  Google Scholar 

  32. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009;37:4587–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagasaki K, Manabe T, Hanzawa H, Maass N, Tsukada T, Yamaguchi K. Identification of a novel gene, LDOC1, down-regulated in cancer cell lines. Cancer Lett. 1999;140:227–34.

    Article  CAS  PubMed  Google Scholar 

  34. Nagasaki K, Schem C, von Kaisenberg C, Biallek M, Rosel F, Jonat W, et al. Leucine-zipper protein, LDOC1, inhibits NF-kappaB activation and sensitizes pancreatic cancer cells to apoptosis. Int J Cancer. 2003;105:454–8.

    Article  CAS  PubMed  Google Scholar 

  35. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511–6.

    Article  CAS  PubMed  Google Scholar 

  36. Munoz LE, Maueroder C, Chaurio R, Berens C, Herrmann M, Janko C. Colourful death: six-parameter classification of cell death by flow cytometry-dead cells tell tales. Autoimmunity. 2013;46:336–41.

    Article  CAS  PubMed  Google Scholar 

  37. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  38. Bagnall J, Leedale J, Taylor SE, Spiller DG, White MR, Sharkey KJ, et al. Tight control of hypoxia-inducible factor-alpha transient dynamics is essential for cell survival in hypoxia. J Biol Chem. 2014;289:5549–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eales KL, Hollinshead KE, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett. 2015;359:107–16.

    Article  CAS  PubMed  Google Scholar 

  41. Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL, et al. Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol Cancer Ther. 2016;15:3064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-kappaB in the pathogenesis of glioma. Mol Cell Oncol. 2014;1:e963478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  45. Xia Y, Shen S, Verma IM. NF-kappaB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, et al. Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res. 2012;72:1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15:416–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell. 2015;28:441–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chirasani SR, Markovic DS, Synowitz M, Eichler SA, Wisniewski P, Kaminska B, et al. Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med (Berl). 2009;87:153–67.

    Article  CAS  Google Scholar 

  50. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    Article  CAS  PubMed  Google Scholar 

  54. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA. 2013;110:8644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72.

    Article  CAS  PubMed  Google Scholar 

  56. Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G, Pacher P. Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun. 2007;358:203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33:473–90.

    Article  CAS  PubMed  Google Scholar 

  58. Trnka J, Blaikie FH, Logan A, Smith RA, Murphy MP. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 2009;43:4–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Cancer Growth Regulation Laboratory for their discussions and technical assistance. This work was supported by grants to Hyunggee Kim from the National Research Foundation (NRF) [grant numbers 2015R1A5A1009024, 2017R1E1A1A01074205 and 2017M3A9A8031425], and the School of Life Sciences and Biotechnology for BK21 Plus, Korea University.

Author information

Authors and Affiliations

Authors

Contributions

HK, JYK, and JKK designed the research experiments. JYK performed all experiments and analyzed the data. JYK contributed new analytical tools. HK and JYK wrote the manuscript.

Corresponding author

Correspondence to Hyunggee Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Kim, JK. & Kim, H. ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF1α-driven NFκB signaling. Oncogene 39, 1969–1982 (2020). https://doi.org/10.1038/s41388-019-1118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1118-6

This article is cited by

Search

Quick links