Skip to main content
Log in

Solubilizing Potential of Ionic, Zwitterionic and Nonionic Surfactants Towards Water Insoluble Drug Flurbiprofen

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Quite a high percentage of newly discovered drugs are discarded due to their low aqueous solubility and variable bioavailability. Therefore, it is necessary to explore new methodologies for increasing the aqueous solubility of such drugs. Several procedures have been proposed for this purpose, including salt formation, particle size reduction or using surfactants. In this report, we have improved the aqueous solubility of flurbiprofen by employing aqueous solution of anionic (SDS, SDBS), cationic (DTAB, CTAB, TTAB), non-ionic (Triton X-100 and Triton X-114 and DDAO) and zwitterionic DDAPS surfactants. It is concluded that all of the surfactants increased the solubility of flurbiprofen which increased with the increasing surfactant concentration. The reason behind such a trend was that the drug is partitioned between micelles and the aqueous phase. An increase in aqueous solubility of the drug was correlated with the (molar) solubilization ratio (χ), partition coefficient of drug (KM) between micelle and water, binding constant (K1) and standard state Gibbs energy of solubilization (\(\Delta G_{\text{s}}^{\text{o}}\)) of the drug in the micelles. The order of drug solubilization in nonionic and zwitterionic surfactants was found as Triton X-114 > Triton X-100 > DDAO > DDAPS. In the case of anionic surfactants, it was noted as SDBS > SDS, whereas cationic surfactants solubilized the drug in the order of CTAB > TTAB > DTAB. The differences in χ and log10KM are attributed to the structural features of the surfactants. The aggregation number, HLB, core volume of micelles and electrostatic interaction between drug and micelles play important roles in solubilization of drugs in micellar solutions. The nonionic surfactants proved to be better, due to their low critical micelle concentrations higher solubilization capability and nontoxic nature; they were also found to have better drug release profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Göktürk, S., Çalışkan, E., Talman, R. Y., Var, U.: A study on solubilization of poorly soluble drugs by cyclodextrins and micelles: complexation and binding characteristics of sulfamethoxazole and trimethoprim. Sci. World J. Article ID 718791 (2012). https://doi.org/10.1100/2012/718791

    Google Scholar 

  2. Duarte, A.R.C., Coimbra, P., de Sousa, H.C., Duarte, C.M.: Solubility of flurbiprofen in supercritical carbon dioxide. J. Chem. Eng. Data 49(3), 449–452 (2004)

    Article  CAS  Google Scholar 

  3. https://www.drugbank.ca/drugs/DB00712. Accessed 14 November 2109

  4. Baek, H.H., Kwon, S.Y., Rho, S.J., Lee, W.S., Yang, H.J., Hah, J.M., Yong, C.S.: Enhanced solubility and bioavailability of flurbiprofen by cycloamylose. Arch. Pharmacal Res. 34(3), 391–397 (2011)

    Article  CAS  Google Scholar 

  5. Li, P., Zhao, L., Yalkowsky, S.H.: Combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs. J. Pharm. Sci. 88(11), 1107–1111 (1999)

    Article  CAS  Google Scholar 

  6. Bhatt, P.M., Ravindra, N.V., Banerjee, R., Desiraju, G.R.: Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem. Commun. 8, 1073–1075 (2005)

    Article  Google Scholar 

  7. Nielsen, A.B., Frydenvang, K., Liljefors, T., Buur, A., Larsen, C.: Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug. Eur. J. Pharm. Sci. 24(1), 85–93 (2005)

    Article  CAS  Google Scholar 

  8. Otsuka, M., Matsuda, Y.: Effect of cogrinding with various kinds of surfactants on the dissolution behavior of phenytoin. J. Pharm. Sci. 84(12), 1434–1437 (1995)

    Article  CAS  Google Scholar 

  9. Abraham, M., Chadha, H., Dixon, J.: Hydrogen bonding. Part 41.1 Factors that influence the distribution of solutes between water and hexadecylpyridinium chloride micelles. J. Chem. Soc. Perkin Trans. 2, 19–24 (1997)

    Article  Google Scholar 

  10. Diallo, M.S., Abriola, L.M., Weber, W.J.: Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates. Environ. Sci. Technol. 28(11), 1829–1837 (1994)

    Article  CAS  Google Scholar 

  11. Fountain, J.C.: The role of field trials in development and feasibility assessment of surfactant-enhanced aquifer remediation. Water Environ. Res. 69(2), 188–195 (1997)

    Article  CAS  Google Scholar 

  12. Jafvert, C.T., Patricia, L.V.H., Heath, J.K.: Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res. 28(5), 1009–1017 (1994)

    Article  CAS  Google Scholar 

  13. Kishore Kumar, N., Murali Mohan Babu, G.V., Prasad, C.D., Himasankar, K., Seshasayana, A., Ramana Murthy, V.: Comparative studies on effect of some hydrophilic polymers on the dissolution rate of a poorly water soluble drug, meloxicam. Indian Drugs 39(6), 323–329 (2002)

    Google Scholar 

  14. Mora, P.C., Cirri, M., Allolio, B., Carli, F., Mura, P.: Enhancement of dehydroepiandrosterone solubility and bioavailability by ternary complexation with α-cyclodextrin and glycine. J. Pharm. Sci. 92(11), 2177–2184 (2003)

    Article  CAS  Google Scholar 

  15. Ullah, I., Baloch, M.K., Durrani, G.F.: Solubility of LIDOCAINE in ionic, nonionic and zwitterionic surfactants. J. Solution Chem. 41, 215–222 (2012)

    Article  CAS  Google Scholar 

  16. Sidim, T.: Some physicochemical properties of octylphenol ethoxylate nonionics (Triton X-100, Triton X-114 and Triton X-405) and the temperature effect on this properties. Trak. Univ. J. Nat. Sci. 13(2), 101–116 (2012)

    Google Scholar 

  17. Ullah, I., Baloch, M.K., Ullah, I., Mustaqeem, M.: Enhancement in aqueous solubility of mefenamic acid using micellar solutions of various surfactants. J. Solution Chem. 43, 1360–1373 (2014)

    Article  CAS  Google Scholar 

  18. Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Tsuruoka, M.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72(11), 1338–1341 (1983)

    Article  CAS  Google Scholar 

  19. Gupta, P., Kakumanu, V.K., Bansal, A.K.: Stability and solubility of celecoxib–PVP amorphous dispersions: a molecular perspective. Pharm. Res. 21(10), 1762–1769 (2004)

    Article  CAS  Google Scholar 

  20. Chauhan, B., Shimpi, S., Paradkar, A.: Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS Pharm. Sci. Tech. 6(3), E405–E409 (2005)

    Article  Google Scholar 

  21. Saha, R.N., Sajeev, C., Priya, K.P., Sreekhar, C., Shashikanth, G.: Solubility enhancement of nimesulide and ibuprofen by solid dispersion technique. Indian J. Pharm. Sci. 64(6), 529–534 (2002)

    CAS  Google Scholar 

  22. Tommasini, S., Calabrò, M.L., Raneri, D., Ficarra, P., Ficarra, R.: Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J. Pharm. Biomed. Anal. 36(2), 327–333 (2004)

    Article  CAS  Google Scholar 

  23. Ullah, I., Baloch, M.K., Durrani, G.F.: Solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in aqueous solutions of non-ionic surfactants. J. Solution Chem. 40, 1341–1348 (2011)

    Article  CAS  Google Scholar 

  24. Ullah, I., Baloch, M.K., Ullah, I.: Apparent solubility of ibuprofen in dimethyl dodecyl ammonium-propane sulfonate, DDAPS, micelles, DDAPS/butanol mixtures and in oil-in-water microemulsions stabilized by DDAPS. J. Solution Chem. 42, 657–665 (2013)

    Article  CAS  Google Scholar 

  25. Yokoyama, M.: Block copolymers as drug carriers. Crit. Rev. Ther. Drug. 9, 213–248 (1992)

    CAS  Google Scholar 

  26. Rangel-YaguiI, C.O., Hsu, H.W.L., Pessoa, J.A., Tavares, L.C.: Micellar solubilization of ibuprofen—the influence of surfactant head on the extent of solubilization. Braz. J. Pharm. Sci. 41, 237–246 (2005)

    Google Scholar 

  27. Albin, P., Markus, A., Pelah, Z., Ben-Zvi, Z.: Slow-release indomethacin formulations based on polysaccharides: evaluation in vitro and in vivo in dogs. J. Control. Release 29(1–2), 25–39 (1994)

    Article  CAS  Google Scholar 

  28. Yamada, I., Goda, T., Kawata, M., Shiotuki, T., Ogawa, K.: Gastric acidity-dependent bioavailability of commercial sustained release preparations of indomethacin, evaluated by gastric acidity-controlled beagle dogs. Chem. Pharm. Bull. 38(11), 3112–3115 (1990)

    Article  CAS  Google Scholar 

  29. Shiraishi, S., Imai, T., Otagiri, M.: Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in vivo/in vitro evaluation. J. Control. Release 25(3), 217–225 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to Institute of Chemical Sciences Gomal University Dera Ismail khan for using its Lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Baloch, M.K., Niaz, S. et al. Solubilizing Potential of Ionic, Zwitterionic and Nonionic Surfactants Towards Water Insoluble Drug Flurbiprofen. J Solution Chem 48, 1603–1616 (2019). https://doi.org/10.1007/s10953-019-00938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00938-3

Keywords

Navigation