Skip to main content
Log in

A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The complex impedance, complex permittivity and, alternating current (ac) conductivity investigations of the CuO/CuFe2O4 nanocomposites, prepared by using via co-precipitation and sol-gel methods, were performed between 1 Hz and 40 MHz within 296 K–433 K in the present study. The structural analyses of the samples were determined by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) spectroscopy and X-Ray Fluorescence (XRF) techniques. The ac impedance and complex permittivity results revealed that these ferrite systems have a heterogeneous structure consisting of conducting grains surrounded with less conducting grain boundaries which are expressed by Koop’s model. Additionally, the temperature dependent dc conductivity showed up the semiconductor-conductor and conductor-semiconductor transitions in different temperatures. From this point of view, the nanocomposites exhibiting conductive or semiconductor behavior depending on temperature have the potential to be used in many electronic devices, including sensor applications. Moreover, the activation energies of the samples calculated by the Arrhenius plots of the dc conductivity indicated both electron and hole hopping processes for the conduction. Furthermore, small polaron charge transport mechanism was implied by the high activation energies. Ac conductivity analyses of the samples showed that the ferrites prepared in the present work exhibit correlated barrier hopping dominantly for the ac conduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Valenzuela, Phys. Res. Int. 2012, Article ID 591839 (2012)

    Google Scholar 

  2. S. Dabagh, K. Chaudhary, Z. Haider, J. Ali, Results Phys. 8, 93 (2018)

    Google Scholar 

  3. W. Zhang, X. Zuo, D. Zhang, C. Wu, S.R.P. Silva, Nanotechnology 27, 245707 (2016)

    Google Scholar 

  4. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Particuology 40, 141 (2018)

    CAS  Google Scholar 

  5. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 097166 (2015)

    Google Scholar 

  6. C.R. Vestal, Z.J. Zhang, Chem. Mater. 14, 3817 (2002)

    CAS  Google Scholar 

  7. F. Waag, B. Gökce, C. Kalapu, G. Bendt, S. Salamon, J. Landers, U. Hagemann, M. Heidelmann, S. Schulz, H. Wende, SCI REP-UK 7, 13161 (2017)

    Google Scholar 

  8. M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, J. Inorg. Organomet. Polym. 1, 2316 (2018)

    Google Scholar 

  9. Y. Peng, Z. Wang, W. Liu, H. Zhang, W. Zuo, H. Tang, F. Chen, B. Wang, Dalton T. 44, 12871 (2015)

    CAS  Google Scholar 

  10. S. Reddy, B.K. Swamy, U. Chandra, K. Mahathesha, T. Sathisha, H. Jayadevappa, Anal. Methods-UK 3, 2792 (2011)

    CAS  Google Scholar 

  11. C. Shu, H. Qiao, 2009 Symposium on Photonics and Optoelectronics (SOPO 2009), 636 (2009)

    Google Scholar 

  12. S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, J. Alloy Compd. 654, 460 (2016)

    CAS  Google Scholar 

  13. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Mater. Sci. Eng. B-Adv. 215, 37 (2017)

    CAS  Google Scholar 

  14. R. Bhowmik, S. Kazhugasalamoorthy, R. Ranganathan, A. Sinha, J. Alloy Compd. 680, 315 (2016)

    CAS  Google Scholar 

  15. M.J. Iqbal, Z. Ahmad, T. Meydan, Y. Melikhov, J. Magn. Magn. Mater. 324, 3986 (2012)

    CAS  Google Scholar 

  16. R. Bhowmik, M. Aswathi, Compos. Part B-Eng. 160, 457 (2019)

    CAS  Google Scholar 

  17. R. Bhowmik, Mater. Res. Express 1, 015903 (2014)

    Google Scholar 

  18. R. Bhowmik, K.A. Kumar, Mater. Chem. Phys. 177, 417 (2016)

    CAS  Google Scholar 

  19. K.A. Kumar, R. Bhowmik, Mater. Res. Express. 4(12), 126105 (2017)

    Google Scholar 

  20. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Google Scholar 

  21. S. Ata-Allah, M. Kaiser, Phys. Status Solidi A 201, 3157 (2004)

    CAS  Google Scholar 

  22. R. Kannan, S. Rajagopan, A. Arunkumar, D. Vanidha, R. Murugaraj, J. Appl. Phys. 112(6), 063926 (2012)

    Google Scholar 

  23. R. Bhowmik, G. Vijayasri, J. Appl. Phys. 114(22), 223701 (2013)

    Google Scholar 

  24. R. Bhowmik, A.G. Lone, J. Alloy Compd. 680, 31 (2016)

    CAS  Google Scholar 

  25. K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, J. Magn. Magn. Mater. 434, 30 (2017)

    CAS  Google Scholar 

  26. J.M. Kshirsagar, R. Shrivastava, P.S. Adwani, Therm. Sci. 21(1), 2039 (2017)

    Google Scholar 

  27. V. Manikandan, A. Vanitha, E.R. Kumar, J. Chandrasekaran, J. Magn. Magn. Mater. 432, 477 (2017)

    CAS  Google Scholar 

  28. K. Ramachandran, S. Chidambaram, B. Baskaran, A. Muthukumarasamy, G.M. Kumar, Mater. Lett. 175, 106 (2016)

    CAS  Google Scholar 

  29. M.-H. Chang, H.-S. Liu, C.Y. Tai, Powder Technol. 207(1–3), 378 (2011)

    CAS  Google Scholar 

  30. B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, J. Mater. Sci.: Mater. Electron. 29(3), 1975 (2018)

    CAS  Google Scholar 

  31. K. Chandrappa, T. Venkatesha, Mater. Corros. 64(9), 831 (2013)

    CAS  Google Scholar 

  32. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, U.S.A. (2001)

  33. M. Wang, Z. Ai, L. Zhang, J. Phys. Chem. C 112, 13163 (2008)

    CAS  Google Scholar 

  34. N. Deraz, J. Anal. Appl. Pyrol. 82, 212 (2008)

    CAS  Google Scholar 

  35. B. Randhawa, J. Mater. Chem. 10, 2847 (2000)

    CAS  Google Scholar 

  36. R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Chem. Mater. 20, 429 (2007)

    Google Scholar 

  37. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton T. 44, 10457 (2015)

    CAS  Google Scholar 

  38. K.M. Batoo, S. Kumar, C.G. Lee, J. Alloy Compd. 480, 596 (2009)

    CAS  Google Scholar 

  39. T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Process Appl. Ceram. 8, 145 (2014)

    Google Scholar 

  40. A.K. Roy, K. Prasad, A. Prasad, Process Appl. Ceram. 7, 81 (2013)

    CAS  Google Scholar 

  41. J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132 (1990)

    CAS  Google Scholar 

  42. C. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  43. J. Maxwell, Electricity and Magnetism (Clarendon Press, UK, Oxford, 1873)

    Google Scholar 

  44. K.W. Wagner, Archiv für Elektrotechnik 2, 371 (1914)

    Google Scholar 

  45. M.Z. Khan, I.H. Gul, H. Anwar, S. Ameer, A.N. Khan, A.A. Khurram, K. Nadeem, M. Mumtaz, J. Magn. Magn. Mater. 424, 382 (2017)

    CAS  Google Scholar 

  46. I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, New York, 1984)

    Google Scholar 

  47. K.S. Aneeshkumar, R. Bhowmik, AIP Conference Proceedings 1731(1), 110015 (2016)

    Google Scholar 

  48. K. Ali, J. Iqbal, T. Jan, D. Wan, N. Ahmad, I. Ahamd, S.Z. Ilyas, J. Magn. Magn. Mater. 428, 417 (2017)

    CAS  Google Scholar 

  49. E.V. Gopalan, K. Malini, S. Sagar, D.S. Kumar, Y. Yoshida, I. Al-Omari, M. Anantharaman, J. Phys. D. Appl. Phys. 42, 165005 (2009)

    Google Scholar 

  50. A. Patil, R. Mahajan, K. Patankar, A. Ghatage, V. Mathe, S. Patil, Indian J. Pure Appl. Phy. 38, 651 (2000)

    CAS  Google Scholar 

  51. N. Sivakumar, A. Narayanasamy, N. Ponpandian, J. Greneche, K. Shinoda, B. Jeyadevan, K. Tohji, J. Phys. D. Appl. Phys. 39, 4688 (2006)

    CAS  Google Scholar 

  52. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Mater. Sci. Appl. 4, 432 (2013)

    CAS  Google Scholar 

  53. A.K. Jonscher, J. Phys. D. Appl. Phys. 32, R57 (1999)

    CAS  Google Scholar 

  54. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19(1), 210 (2017)

    CAS  Google Scholar 

  55. S. Elliott, Philos. Mag. B 37, 553 (1978)

    CAS  Google Scholar 

  56. S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943 (2016)

    CAS  Google Scholar 

  57. A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Materials 11(5), 735 (2018)

    Google Scholar 

  58. J. Sharma, S. Kumar, Chalcogenide Lett. 6, 673 (2009)

    CAS  Google Scholar 

  59. M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, J. Alloy Compd. 649, 642 (2015)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Yildiz Technical University Scientific Research Projects Coordination Department with the Project Number FBA-2017-3162. Authors would also like to thank Prof. Dr. Mehmet Acet for his efforts during the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Güven Özdemir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, Z.G., Kılıç, M., Karabul, Y. et al. A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites. J Electroceram 44, 1–15 (2020). https://doi.org/10.1007/s10832-019-00194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00194-3

Keywords

Navigation