Skip to main content
Log in

Physical principles of the formation of a nanoparticle electric double layer in metal hydrosols

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The Brownian dynamics method is employed to study the formation of an electrical double layer (EDL) on the metal nanoparticle (NP) surface in hydrosols during adsorption of electrolyte ions from the interparticle medium. Also studied is the charge accumulation by NPs in the Stern layer. To simulate the process of the formation of EDL, we took into account the effect of image forces and specific adsorption, dissipative and random forces, and the degree of hydration of adsorbed ions on the EDL structure. The employed model makes it possible to determine the charge of NPs and the structure of EDL. For the first time, the charge of both the diffuse part of EDL and the dense Stern layer has been determined. A decrease in the electrolyte concentration (below c < 0.1 mol/l) has been found to result in dramatic changes in the formation of the Stern layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao C. N. R., Müller A, Cheetham AK (eds) (2004) The chemistry of nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  2. Sonntag H, Strenge K (1970) Koagulation und stabilität disperser Systeme, 173 S., VEB Deutscher Verlag der Wissenschaften, vol 73. Preis: 30.80 MDN, Berlin, p 1971

    Google Scholar 

  3. French RH, Parsegian VA, Podgornik R, Rajter RF, Jagota A, Luo J, Asthagiri D, Chaudhury MK, Chiang Y-M, Granick S, Kalinin S, Kardar M, Kjellander R, Langreth DC, Lewis J, Lustig S, Wesolowski D, Wettlaufer JS, Ching W-Y, Finnis M, Houlihan F, von Lilienfeld OA, van Oss CJ, Zemb T (2010) Long range interactions in nanoscale science. Rev Modern Phys 82:1887–1944,6

    Article  Google Scholar 

  4. Walker DA, Kowalczyk B, de la Cruz MO, Grzybowski BA (2011) Electrostatics at the nanoscale. Nanoscale 3(4):1316

    Article  CAS  Google Scholar 

  5. Linse P (2005) Simulation of charged colloids in solution

  6. Henderson D, Boda D (2009) Insights from theory and simulation on the electrical double layer. Phys Chem Chem Phys 11:3822, 4

    Article  Google Scholar 

  7. Spohr E (1999) Molecular simulation of the electrochemical double layer. Electrochim Acta 44:1697–1705, 1

    Article  CAS  Google Scholar 

  8. Semashko OV, Brodskaya EN, Us’yarov OG (2005) Molecular dynamics simulation of the electrical double layer of spherical macroion. Colloid J 67:625–630, 9

    Article  CAS  Google Scholar 

  9. Fahrenberger F, Xu Z, Holm C (2014) Simulation of electric double layers around charged colloids in aqueous solution of variable permittivity. J Chem Phys 141:064902, 8

    Article  Google Scholar 

  10. Messina R, Holm C, Kremer K (2001) Effect of colloidal charge discretization in the primitive model. Eur Phys J E 4:363–370, 3

    Article  CAS  Google Scholar 

  11. Gan Z, Xing X, Xu Z (2012) Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers. J Chem Phys 137:169901, 10

    Google Scholar 

  12. Torrie GM, Valleau JP, Patey GN (1982) Electrical double layers. II. Monte Carlo and HNC studies of image effects. J Chem Phys 76:4615–4622, 5

    Article  CAS  Google Scholar 

  13. Emelyanenko KA, Emelyanenko AM, Boinovich L (2015) Image-charge forces in thin interlayers due to surface charges in electrolyte. Phys Rev E 91:032402, 3

    Article  Google Scholar 

  14. Izraelashvili JN (2011) Intermolecular and surface forces. Elsevier, Amsterdam

  15. Campo MG, Raul Grigera J (2004) Molecular dynamics simulation of OH - in water. Mol Simul 30:537–542, 7

    Article  CAS  Google Scholar 

  16. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2003) Solvation of hydroxyl ions in water. J Chem Phys 119:5001–5004, 9

    Article  CAS  Google Scholar 

  17. Heermann DW (1990) Computer simulation methods in theoretical physics. Springer, Berlin

    Chapter  Google Scholar 

  18. Tuckerman ME, Chandra A, Marx D (2006) Structure and dynamics of OH - (aq). Account Chem Res 39:151–158, 2

    Article  CAS  Google Scholar 

  19. Tuckerman ME, Marx D, Parrinello M (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–929, 6

    Article  CAS  Google Scholar 

  20. Patrito E, Paredes-Olivera P (2003) Adsorption of hydrated hydroxide and hydronium ions on Ag(111). A quantum mechanical investigation. Surf Sci 527:149–162, 3

    Article  CAS  Google Scholar 

  21. Nechaev IV, Vvedenskii AV (2009) Quantum chemical modeling of hydroxide ion adsorption on group IB metals from aqueous solutions. Protect Met Phys Chem Surf 45:391–397, 7

    Article  CAS  Google Scholar 

  22. Bunkin NF, Bunkin FV (2003) Screening of strongly charged macroparticles in liquid electrolyte solutions. J Exper Theor Phys 96:730–746, 4

    Article  CAS  Google Scholar 

  23. Mateescu EM, Jeppesen C, Pincus P (1999) Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhys Lett (EPL) 46:493–498, 5

    Article  CAS  Google Scholar 

  24. Park SY, Bruinsma RF, Gelbart WM (1999) Spontaneous overcharging of macro-ion complexes. Europhys Lett (EPL) 46:454–460, 5

    Article  CAS  Google Scholar 

  25. Joanny J (1999) Polyelectrolyte adsorption and charge inversion. Eur Phys J B 9:117–122, 5

    Article  CAS  Google Scholar 

Download references

Funding

The reported research was funded by the Russian Foundation for Basic Research and the government of the Krasnoyarsk territory, Krasnoyarsk Regional Fund of Science, grant No 18-42-243023, the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Gavrilyuk.

Ethics declarations

Conflict of interests

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilyuk, A.P., Isaev, I.L., Gerasimov, V.S. et al. Physical principles of the formation of a nanoparticle electric double layer in metal hydrosols. Colloid Polym Sci 298, 1–7 (2020). https://doi.org/10.1007/s00396-019-04573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04573-8

Keywords

Navigation