Skip to main content
Log in

Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The cashew apple (Anacardium occidentale L.) is rich in antioxidants such as ascorbic acid, carotenoids, and phenolic compounds, in addition to the macronutrients. In recent years, there has been a growing demand of “easy to prepare” fruit products for the general population. This work aimed to evaluate the microencapsulation of cashew apple juice by spray drying using different ratios of encapsulating matrices and different concentrations of total solids. The formed microparticles were evaluated by the retention of ascorbic acid, total phenolics, moisture, yield, solubility, and particle size and morphology. Three samples formulated with 15% total solids and three encapsulating matrices (40:60% of maltodextrin: starch octenylsuccinate, 100% of maltodextrin, and 100% starch octenylsuccinate) were selected for the stability study. All microparticles were 100% soluble, and the best results were obtained using the microparticles with the highest total solids ratios (15%). When using a single encapsulant, starch octenyl succinate was superior to maltodextrin in terms of ascorbic acid and total phenolics retention, moisture, yield, solubility, and particle size. The microparticles with 40:60% of maltodextrin: octenylsuccinate and 15% total solid showed the highest ascorbic acid and total phenolics retention as well as good physical properties and better performance when compared to other encapsulating matrix compositions. The microencapsulated cashew apple juice using such a formulation can be used in the food industry to produce functional and special-purpose foods to promote human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amorati, R., & Valgimigli, L. (2018). Methods to measure the antioxidant activity of phytochemicals and plant extracts. Journal of Agricultural and Food Chemistry, 66(13), 3324–3329.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, M. I. R., Sousa, A. C. R., Abreu, F. A. P., Ximenes, S. F., & Garruti, D. S. (2018). Changes in cashew apple juice flavor after tangential microfiltration process. Annals of Nutrition & Food Science, 2(4), 1–4.

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis of the Association of the Agricultural Chemists. Washington: A.O.A.C. (12 Ed).

  • Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.

    Article  CAS  Google Scholar 

  • Bastos, D. S., & do Pilar Gonçalves, M., de Andrade, C. T., de Lima Araújo, K. G., & da Rocha Leão, M. H. M. (2012). Microencapsulation of cashew apple (Anacardium occidentale, L.) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food and Bioproducts Processing, 90(4), 683–692.

  • Bataglion, G. A., da Silva, F. M., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chemistry, 180, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Boatright, W. L. (2016). Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Food Chemistry, 196, 1361–1367.

    Article  CAS  PubMed  Google Scholar 

  • Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352.

    Article  CAS  Google Scholar 

  • Brazil, National Health Surveillance Agency. (2012). Technical regulation on complementary nutrition information. Ministry of Health, Resolution RDC N°54. Accessed 20 May 2019.

  • Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT- Food Science and Technology, 55(1), 117–123.

    Article  CAS  Google Scholar 

  • Cazado, C. P. S., & Pinho, S. C. (2016). Effect of different stress conditions on the stability of quercetin-loaded lipid microparticles produced with babacu (Orbignya speciosa) oil: Evaluation of their potential use in food applications. Food Science and Technology, 36(1), 9–17.

    Article  Google Scholar 

  • Christina, B. L., Taylor, S., & Mauer, L. J. (2015). Physical stability of L-ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. Food Research International, 76(3), 867–877.

    Article  CAS  PubMed  Google Scholar 

  • Costa, A. M. M., Nunes, J. C., Lima, B. N., Pedrosa, C., Calado, V., Torres, A. G., et al. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168, 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Das, I., & Arora, A. (2017). Post-harvest processing technology for cashew apple - a review. Journal of Food Engineering, 194, 87–98.

    Article  CAS  Google Scholar 

  • De Oliveira, M. A., Maia, G. A., De Figueiredo, R. W., De Souza, A. C. R., De Brito, E. S., & De Azeredo, H. M. C. (2009). Addition of cashew tree gum to maltodextrin-based carriers for spray drying of cashew apple juice. International Journal of Food Science & Technology, 44(3), 641–645.

    Article  CAS  Google Scholar 

  • Dias, M. I., Ferreira, I. C., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035–1052.

    Article  CAS  Google Scholar 

  • Drusch, S., Serfert, Y., Scampicchio, M., Schmidt-Hansberg, B., & Schwarz, K. (2007). Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. Journal of Agricultural and Food Chemistry, 55(26), 11044–11051.

    Article  CAS  PubMed  Google Scholar 

  • Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  • Fantini, M., Benvenuto, M., Masuelli, L., Frajese, G. V., Tresoldi, I., Modesti, A., & Bei, R. (2015). In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. International Journal of Molecular Sciences, 16(5), 9236–9282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO – Food and Agriculture Organization of the United Nations. (2014). Key statistics of food and agriculture external trade. United Nations Conference on Trade and Development. http://www.fao.org/countryprofiles/index/en/?iso3=BRA&paia=2. ().

  • Finotelli, P. V., & Rocha-Leão, M. H. (2005). Microencapsulation of ascorbic acid in maltodextrin and capsule using spray-drying. In Anais do 4° Mercosur congress on process systems engineering. Innovative Food Science and Emerging Technologies, 8, 395–398.

    Google Scholar 

  • Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Fernandes, F. A. N., & Rodrigues, S. (2017). Sonication effect on bioactive compounds of cashew apple bagasse. Food and Bioprocess Technology, 10(10), 1854–1864.

    Article  CAS  Google Scholar 

  • Fu, F., & Hu, L. (2017). Temperature sensitive colour-changed composites. Advanced High Strength Natural Fibre Composites in Construction, 405–423.

  • Gaikwad, K. K., Singh, S., & Lee, Y. S. (2018). Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 6(2), 523–538.

    Article  CAS  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. Journal of Food Engineering, 66(1), 35–42.

    Article  Google Scholar 

  • Hendrawati, T. Y., Sari, A. M., Rahman, M. I. S., Nugrahani, R. A., & Siswahyu, A. (2019). Microencapsulation techniques of herbal compounds for raw materials in food industry, cosmetics and pharmaceuticals (pp. 1–15). Technologies and Industrial Applications: Microencapsulation - Processes.

    Google Scholar 

  • Hofman, D. L., van Buul, V. J., & Brouns, F. J. P. H. (2016). Nutrition, health, and regulatory aspects of digestible maltodextrins. Critical Reviews in Food Science and Nutrition, 56(12), 2091–2100.

    Article  CAS  PubMed  Google Scholar 

  • Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161.

    Article  CAS  Google Scholar 

  • Islam, M. S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., et al. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innovative Food Science & Emerging Technologies, 34, 344–351.

    Article  CAS  Google Scholar 

  • Jana, A., Halder, S. K., Ghosh, K., Paul, T., Vágvölgyi, C., Mondal, K. C., & Das Mohapatra, P. K. (2015). Tannase immobilization by chitin-alginate based adsorption-entrapment technique and its exploitation in fruit juice clarification. Food and Bioprocess Technology, 8(11), 2319–2329.

    Article  CAS  Google Scholar 

  • Karou, D., Dicko, M. H., Simpore, J., & Traore, A. S. (2005). Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology, 4(8), 823–828.

    CAS  Google Scholar 

  • Lavinas, F. C., Almeida, N. C., Miguel, M. A. L., Lopes, M. L. M., & Valente-Mesquita, V. L. (2006). Estudo da estabilidade química e microbiológica do suco de caju in natura armazenado em diferentes condições de estocagem. Ciência e Tecnologia de Alimentos, 26(4), 875–883.

    Article  CAS  Google Scholar 

  • Leitão, R. C., Viana, M., Pinto, G., Freitas, A. V., & Santaella, S. (2011). Produção de Biogás a Partir do Glicerol Oriundo do biodiesel. Technical Report, 180, 1–4.

    Google Scholar 

  • Li, Y., Tang, B., Chen, J., & Lai, P. (2018). Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology, 38(3), 530–536.

    Article  Google Scholar 

  • Lutz, I. A. (2005). Métodos físico-químicos Para análise de alimentos. São Paulo: Instituto Adolfo Lutz.

    Google Scholar 

  • Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.

  • Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A., Chen, C. Y. O., & Lima, G. P. P. (2017). Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compounds - Biological Activity, Chapter, 1, 1–24.

    Google Scholar 

  • Nilsson, L., & Bergenståhl, B. (2007). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 308(2), 508–513.

    Article  CAS  PubMed  Google Scholar 

  • Obón, J. M., Castellar, M. R., Alacid, M. M., & Fernández-López, J. A. (2009). Production of a red–purple food colorant from Opuntiastrict a fruits by spray drying and its application in food model systems. Journal of Food Engineering, 90(4), 471–479.

    Article  Google Scholar 

  • Paulo, M. G., Marques, H. M. C., Morais, J. A., & Almeida, A. J. (1999). An isocratic LC method for the simultaneous determination of vitamins a, C, E and β-carotene. Journal of Pharmaceutical and Biomedical Analysis, 21(2), 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C., & Pierucci, A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International, 42(1), 115–121.

    Article  CAS  Google Scholar 

  • Pereira, A. L. F., Almeida, F. D. L., Lima, M. A., & Costa, J. M. C. (2014). Spray-drying of probiotic cashew apple juice. Food and Bioprocess Technology, 7(9), 2492–2499.

    CAS  Google Scholar 

  • Pierucci, A. P. T. R., Andrade, L. R., Baptista, E. B., Volpato, N. M., & Rocha-Leão, M. H. M. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654–662.

    Article  CAS  PubMed  Google Scholar 

  • Pierucci, A. P. T. R., Andrade, L. R., Farina, M., Pedrosa, C., & Rocha-Leão, M. H. M. (2007). Comparison of α-tocopherol microparticles produced with different wall materials: Pea protein a new interesting alternative. Journal of Microencapsulation, 24(3), 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7(8), 2354–2365.

    Article  CAS  Google Scholar 

  • Prasertsri, P., & Leelayuwat, N. (2017). Cashew apple juice: Contents and effects on health. Nutrition & Food Science International Journal, 491), 1-3.

  • Prommajak, T., Leksawasdi, N., & Rattanapanone, N. (2014). Biotechnological valorization of cashew apple: A review. Chiang Mai University Journal of Natural Sciences, 13(2), 159–182.

    Article  Google Scholar 

  • Queiroz, C., da Silva, A. J. R., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011a). Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale, L.) after processing. Food Chemistry, 125(1), 128–132.

    Article  CAS  Google Scholar 

  • Queiroz, C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011b). Changes in bioactive compounds and antioxidant capacity of fresh-cut cashew apple. Food Research International, 44(5), 1459–1462.

    Article  CAS  Google Scholar 

  • Raseetha, S., Leong, S. Y., Burritt, D. J., & Oey, I. (2013). Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing. Food Chemistry, 138(2), 1360–1369.

    Article  CAS  PubMed  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  • Reineccius, G. A. (2004). The spray drying of food flavors. Drying Technology, 22(6), 1289–1324.

    Article  Google Scholar 

  • Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry, 38(5), 1288–1294.

    Article  CAS  Google Scholar 

  • Saénz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntiaficus-indica). Food Chemistry, 114(2), 616–622.

    Article  CAS  Google Scholar 

  • Sansone, F., Mencherini, T., Picerno, P., d’Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468–476.

    Article  CAS  Google Scholar 

  • Sheu, T. Y., & Rosenberg, M. (1998). Microstructure of microcapsules consisting of whey proteins and carbohydrates. Journal of Food Science, 63(3), 491–494.

    Article  CAS  Google Scholar 

  • Singh, S. S., Abdullah, S., Pradhan, R. C., & Mishra, S. (2019). Physical, chemical, textural, and thermal properties of cashew apple fruit. Journal of Food Process Engineering, e1394, 1-10.

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905–920.

    Article  CAS  PubMed  Google Scholar 

  • Tresserra-Rimbau, A., Guasch-Ferré, M., Salas-Salvadó, J., Toledo, E., Corella, D., Castañer, O., et al. (2016). Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. The Journal of Nutrition, 146(4), 767–777.

    CAS  Google Scholar 

  • Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315–5321.

    Article  CAS  PubMed  Google Scholar 

  • Walton, D. E., & Mumford, C. J. (1999). The morphology of spray-dried particles: The effect of process variables upon the morphology of spray-dried particles. Chemical Engineering Research and Design, 77(5), 442–460.

    Article  CAS  Google Scholar 

  • Wojdyło, A., Carbonell-Barrachina, Á. A., Legua, P., & Hernández, F. (2016). Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube mill.) fruits. Food Chemistry, 201, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, L., Ding, Z., Zhang, M., & Sun, J. (2011). Microencapsulation of bayberry polyphenols by ethyl cellulose: Preparation and characterization. Journal of Food Engineering, 104(1), 89–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro).

Author information

Authors and Affiliations

Authors

Contributions

P.D.D.S.M., V.L.V.M., and A.P.T.P. conceptualized and designed the research. P.D.D.S.M., D.S.B., V.P.F.S., and C.Q. analyzed the cashew apple juice, obtained experimental data, and interpreted the results. P.D.D.S.M., D.S.B., and C.Q. prepared the figures and wrote the manuscript. P.D.D.S.M., D.S.B., V.L.V.M., and A.P.T.P. edited and revised the manuscript. All authors read the manuscript, critically examined the important intellectual content, and approved the final version.

Corresponding author

Correspondence to Anna Paola T. R. Pierucci.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, P.D.D.S., dos Santos Baião, D., da Silva, V.P.F. et al. Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food Bioprocess Technol 12, 2107–2119 (2019). https://doi.org/10.1007/s11947-019-02376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02376-x

Keywords

Navigation