Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimal residual disease

Quantitative chimerism in CD3-negative mononuclear cells predicts prognosis in acute myeloid leukemia patients after hematopoietic stem cell transplantation

Abstract

Relapse is a major complication of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (SCT). The objective of our study was to evaluate chimerism monitoring on the CD3-negative mononuclear cells by RQ-PCR to predict relapse of patients allografted for AML and to compare its performance with WT1 quantification. A cohort of 100 patients undergoing allogenic SCT for AML was retrospectively analyzed in a single institution. Patients without complete chimerism, defined as less than 0.01% of recipient’s DNA in CD3-negative cells, had a significantly higher risk of relapse and a lower overall survival (p < 0.001). An increase in the percentage of recipient DNA in CD3-negative cells was associated with an increased risk of relapse (p < 0.001) but not with overall survival. Comparable performances between monitoring of CD3-negative cell chimerism and WT1 expression to predict relapse was observed up to more than 90 days before hematological relapse, with sensitivity of 82% and 78%, respectively, and specificity of 100% for both approaches. Quantitative specific chimerism of the CD3-negative mononuclear fraction, enriched in blastic cells, is a new and powerful tool for monitoring measurable residual disease and could be used for AML patients without available molecular markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    PubMed  PubMed Central  Google Scholar 

  2. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Horowitz M, Schreiber H, Elder A, Heidenreich O, Vormoor J, Toffalori C, et al. Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant. 2018;53:1379–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. de Lima M, Porter DL, Battiwalla M, Bishop MR, Giralt SA, Hardy NM, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse After Hematopoietic Stem Cell Transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2014;20:4–13.

    Google Scholar 

  5. Bejanyan N, Weisdorf DJ, Logan BR, Wang H-L, Devine SM, de Lima M, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2015;21:454–9.

    PubMed  Google Scholar 

  6. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071–9.

    PubMed  CAS  Google Scholar 

  7. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16:2115–21.

    PubMed  CAS  Google Scholar 

  8. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients—results from a single-centre study. Br J Haematol. 2004;125:590–600.

    PubMed  CAS  Google Scholar 

  9. Cilloni D, Messa F, Arruga F, Defilippi I, Gottardi E, Fava M, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93:921–4.

    PubMed  Google Scholar 

  10. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European Leukemianet Study. J Clin Oncol. 2009;27:5195–201.

    PubMed  CAS  Google Scholar 

  11. Lange T, Hubmann M, Burkhardt R, Franke GN, Cross M, Scholz M, et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. 2011;25:498–505.

    PubMed  CAS  Google Scholar 

  12. Zhao X-S, Jin S, Zhu H-H, Xu L-P, Liu D-H, Chen H, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012;47:499–507.

    PubMed  CAS  Google Scholar 

  13. Kwon M, Martínez-Laperche C, Infante M, Carretero F, Balsalobre P, Serrano D, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18:1235–42.

    PubMed  CAS  Google Scholar 

  14. Pozzi S, Geroldi S, Tedone E, Luchetti S, Grasso R, Colombo N, et al. Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br J Haematol. 2013;160:503–9.

    PubMed  Google Scholar 

  15. Yoon J-H, Kim H-J, Shin S-H, Yahng S-A, Lee S-E, Cho B-S, et al. Serial measurement of WT1 expression and decrement ratio until hematopoietic cell transplantation as a marker of residual disease in patients with cytogenetically normal acute myelogenous leukemia. Biol Blood Marrow Transplant. 2013;19:958–66.

    PubMed  CAS  Google Scholar 

  16. Rossi G, Carella AM, Minervini MM, di Nardo F, Waure C, de, Greco MM, et al. Optimal time-points for minimal residual disease monitoring change on the basis of the method used in patients with acute myeloid leukemia who underwent allogeneic stem cell transplantation: a comparison between multiparameter flow cytometry and Wilms’ tumor 1 expression. Leuk Res. 2015;39:138–43.

    PubMed  Google Scholar 

  17. Israyelyan A, Goldstein L, Tsai W, Aquino L, Forman SJ, Nakamura R, et al. Real-time assessment of relapse risk based on the WT1 marker in acute leukemia and myelodysplastic syndrome patients after hematopoietic cell transplantation. Bone Marrow Transplant. 2015;50:26–33.

    PubMed  CAS  Google Scholar 

  18. Di Grazia C, Pozzi S, Geroldi S, Grasso R, Miglino M, Colombo N, et al. Wilms tumor 1 expression and pre-emptive immunotherapy in patients with acute myeloid leukemia undergoing an allogeneic hemopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22:1242–6.

    PubMed  Google Scholar 

  19. Duléry R, Nibourel O, Gauthier J, Elsermans V, Behal H, Coiteux V, et al. Impact of Wilms’ tumor 1 expression on outcome of patients undergoing allogeneic stem cell transplantation for AML. Bone Marrow Transplant. 2017;52:539–43.

    PubMed  Google Scholar 

  20. Rautenberg C, Pechtel S, Hildebrandt B, Betz B, Dienst A, Nachtkamp K, et al. Wilms’ tumor 1 gene expression using a standardized european leukemianet-certified assay compared to other methods for detection of minimal residual disease in myelodysplastic syndrome and acute myelogenous leukemia after allogeneic blood stem cell transplantation. Biol Blood Marrow Transplant. 2018;24:2337–43.

    PubMed  CAS  Google Scholar 

  21. Schaap N, Schattenberg A, Mensink E, Preijers F, Hillegers M, Knops R, et al. Long-term follow-up of persisting mixed chimerism after partially T cell-depleted allogeneic stem cell transplantation. Leukemia. 2002;16:13.

    PubMed  CAS  Google Scholar 

  22. Rossi G, Carella AM, Minervini MM, Savino L, Fontana A, Pellegrini F, et al. Minimal residual disease after allogeneic stem cell transplant: a comparison among multiparametric flow cytometry, Wilms tumor 1 expression and chimerism status (Complete chimerism versus Low Level Mixed Chimerism) in acute leukemia. Leuk Lymphoma. 2013;54:2660–6.

    PubMed  CAS  Google Scholar 

  23. Pérez-Simón JA, Caballero D, Diez-Campelo M, Lopez-Pérez R, Mateos G, Cañizo C, et al. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia. 2002;16:1423–31.

    PubMed  Google Scholar 

  24. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Kremens B, Dilloo D, et al. Increasing mixed chimerism defines a high-risk group of childhood acute myelogenous leukemia patients after allogeneic stem cell transplantation where pre-emptive immunotherapy may be effective. Bone Marrow Transplant. 2004;33:815–21.

    PubMed  CAS  Google Scholar 

  25. Huisman C, de Weger RA, de Vries L, Tilanus MGJ, Verdonck LF. Chimerism analysis within 6 months of allogeneic stem cell transplantation predicts relapse in acute myeloid leukemia. Bone Marrow Transplant. 2007;39:285–91.

    PubMed  CAS  Google Scholar 

  26. Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH. Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide polymorphisms, standard tandem repeats,and Y-chromosome-specific sequences. Am J Hematol. 2006;81:735–46.

    PubMed  CAS  Google Scholar 

  27. Jiménez-Velasco A, Barrios M, Román-Gómez J, Navarro G, Buño I, Castillejo JA, et al. Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia. 2005;19:336–43.

    PubMed  Google Scholar 

  28. Lion T, Daxberger H, Dubovsky J, Filipcik P, Fritsch G, Printz D, et al. Analysis of chimerism within specific leukocyte subsets for detection of residual or recurrent leukemia in pediatric patients after allogeneic stem cell transplantation. Leukemia. 2001;15:307–307.

    PubMed  CAS  Google Scholar 

  29. Scheffold C, Kroeger M, Zuehlsdorf M, Tchinda J, Silling G, Bisping G, et al. Prediction of relapse of acute myeloid leukemia in allogeneic transplant recipients by marrow CD34+ donor cell chimerism analysis. Leukemia. 2004;18:2048–50.

    PubMed  CAS  Google Scholar 

  30. Bornhauser M, Oelschlaegel U, Platzbecker U, Bug G, Lutterbeck K, Kiehl MG, et al. Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica. 2009;94:1613–7.

    PubMed  PubMed Central  Google Scholar 

  31. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33.

    PubMed  PubMed Central  Google Scholar 

  32. Alizadeh M. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood. 2002;99:4618–25.

    PubMed  CAS  Google Scholar 

  33. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901–28.

    PubMed  Google Scholar 

  34. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21:4642–9.

    PubMed  Google Scholar 

  35. Bretz F, Hothorn T, Westfall P. Multiple comparisons using R. 1st ed. Chapman and Hall/CRC press: NY, USA, 2016, ISBN: 9780429139543, 205pp.

  36. Lafaye de Micheaux P, Liquet B, Marque S, Riou J. Power and sample size determination in clinical trials with multiple primary continuous correlated endpoints. J Biopharm Stat. 2014;24:378–97.

    PubMed  Google Scholar 

  37. Blanche P, Riou J. “Multiple comparisons of areas onder the ROC curve”. In: XXIXth International Biometric Conference. 8-13/07/2018, Barcelona.

  38. Mellgren K, Arvidson J, Toporski J, Winiarski J. Chimerism analysis in clinical practice and its relevance for the detection of graft rejection and malignant relapse in pediatric hematopoietic stem cell transplant patients. Pediatr Transplant. 2015;19:758–66.

    PubMed  Google Scholar 

  39. Ogawa H. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101:1698–704.

    PubMed  CAS  Google Scholar 

  40. Ommen HB, Nyvold CG, Brændstrup K, Andersen BL, Ommen IB, Hasle H, et al. Relapse prediction in acute myeloid leukaemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol. 2008;141:782–91.

    PubMed  CAS  Google Scholar 

  41. Lion T, Watzinger F, Preuner S, Kreyenberg H, Tilanus M, de Weger R, et al. The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation. Leukemia. 2012;26:1821–8.

    PubMed  CAS  Google Scholar 

  42. Mohty M, Avinens O, Faucher C, Viens P, Blaise D, Eliaou J-F. Predictive factors and impact of full donor T-cell chimerism after reduced intensity conditioning allogeneic stem cell transplantation. Haematologica. 2007;92:1004–6.

    PubMed  Google Scholar 

  43. Qin X-Y, Li G-X, Qin Y-Z, Wang Y, Wang F-R, Liu D-H, et al. Quantitative chimerism: an independent acute leukemia prognosis indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49:1269–77.

    PubMed  CAS  Google Scholar 

  44. Jacque N, Nguyen S, Golmard JL, Uzunov M, Garnier A, Leblond V, et al. Chimerism analysis in peripheral blood using indel quantitative real-time PCR is a useful tool to predict post-transplant relapse in acute leukemia. Bone Marrow Transplant. 2015;50:259–65.

    PubMed  CAS  Google Scholar 

  45. Lee HC, Saliba RM, Rondon G, Chen J, Charafeddine Y, Medeiros LJ, et al. Mixed T lymphocyte chimerism after allogeneic hematopoietic transplantation is predictive for relapse of acute myeloid leukemia and myelodysplastic syndromes. Biol Blood Marrow Transplant. 2015;21:1948–54.

    PubMed  PubMed Central  Google Scholar 

  46. Van Leeuwen JE, Van Tol MJ, Joosten AM, Wijnen JT, Verweij PJ, Khan PM, et al. Persistence of host-type hematopoiesis after allogeneic bone marrow transplantation for leukemia is significantly related to the recipient’s age and/or the conditioning regimen, but it is not associated with an increased risk of relapse. Blood. 1994;83:3059–67.

    PubMed  Google Scholar 

  47. Ahci M, Stempelmann K, Buttkereit U, Crivello P, Trilling M, Heinold A, et al. Clinical utility of quantitative PCR for chimerism and engraftment monitoring after allogeneic stem cell transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2017;23:1658–68.

    PubMed  CAS  Google Scholar 

  48. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T. How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant. 2005;35:107–19.

    PubMed  CAS  Google Scholar 

  49. Rosenow F, Berkemeier A, Krug U, Müller-Tidow C, Gerss J, Silling G, et al. CD34+ lineage specific donor cell chimerism for the diagnosis and treatment of impending relapse of AML or myelodysplastic syndrome after allo-SCT. Bone Marrow Transplant. 2013;48:1070.

    PubMed  CAS  Google Scholar 

  50. Unnikrishnan A, Meacham AM, Goldstein SS, Ta M, Leather HL, Cogle CR, et al. CD34+ chimerism analysis for minimal residual disease monitoring after allogeneic hematopoietic cell transplantation. Leuk Res. 2018;74:110–2.

    PubMed  CAS  Google Scholar 

  51. Baer MR, Stewart CC, Dodge RK, Leget G, Sulé N, Mrózek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood. 2001;97:3574–80.

    PubMed  CAS  Google Scholar 

  52. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102:865–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Baron F, Baker JE, Storb R, Gooley TA, Sandmaier BM, Maris MB, et al. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. 2004;104:2254–62.

    PubMed  CAS  Google Scholar 

  54. Wiedemann B, Klyuchnikov E, Kröger N, Zabelina T, Stahl T, Zeschke S, et al. Chimerism studies with quantitative real-time PCR in stem cell recipients with acute myeloid leukemia. Exp Hematol. 2010;38:1261–71.

    PubMed  CAS  Google Scholar 

  55. Bouvier A, Ribourtout B, François S, Orvain C, Paz DL, Beucher A, et al. Donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2018;101:570–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was realized in the context of (i) the LabEX IGO program supported by the National Research Agency via the investment of the future program ANR-11-LABX-0016-01 and of (ii) the SIRIC ILIAD program supported by the French National Cancer Institute national (INCa), the Ministry of Health and the Institute for Health and Medical Research (Inserm) (contract INCa-DGOS-Inserm_12558). The authors would like to thank the patients who participated in this study, and the technicians who participated in biological collection and experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Bouvier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouvier, A., Riou, J., Thépot, S. et al. Quantitative chimerism in CD3-negative mononuclear cells predicts prognosis in acute myeloid leukemia patients after hematopoietic stem cell transplantation. Leukemia 34, 1342–1353 (2020). https://doi.org/10.1038/s41375-019-0624-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0624-4

Search

Quick links