Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis

Abstract

Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP+). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN+). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 107-fold cofactor specificity switch toward NMN+ over NADP+ based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the central carbon metabolism to support growth. Overall, this work demonstrates efficient use of a noncanonical cofactor in biocatalysis and metabolic pathway design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering Bs GDH to use NMN+ as redox cofactor efficiently in biotransformation in vitro.
Fig. 2: Engineering Bs GDH to exclude NADP+.
Fig. 3: In vivo NMN+ cycling supports E. coli growth.
Fig. 4: Bs GDH Ortho selectively provides reducing power for levodione production in E. coli whole cells.

Similar content being viewed by others

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the manuscript and its Supplementary Information.

References

  1. Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Mampel, J., Buescher, J. M., Meurer, G. & Eck, J. Coping with complexity in metabolic engineering. Trends Biotechnol. 31, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Pandit, A. V., Srinivasan, S. & Mahadevan, R. Redesigning metabolism based on orthogonality principles. Nat. Commun. 8, 15188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, L. et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer. ACS Catal. 7, 1977–1983 (2017).

    Article  CAS  Google Scholar 

  6. Martínez, A. T. et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 35, 815–831 (2017).

    Article  PubMed  CAS  Google Scholar 

  7. Wildeman, S. M. A. D., Sonke, T., Schoemaker, H. E. & May, O. Biocatalytic reductions: from lab curiosity to ‘first choice’. Acc. Chem. Res. 40, 1260–1266 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Campbell, E., Meredith, M., Minteer, S. D. & Banta, S. Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem. Commun. 48, 1898–1900 (2012).

    Article  CAS  Google Scholar 

  9. Knaus, T. et al. Better than Nature: nicotinamide biomimetics that outperform natural coenzymes. J. Am. Chem. Soc. 138, 1033–1039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nowak, C., Pick, A., Lommes, P. & Sieber, V. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors. ACS Catal. 7, 5202–5208 (2017).

    Article  CAS  Google Scholar 

  11. Flores, H. & Ellington, A. D. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Eng. Des. Sel. 18, 369–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lo, H. C. & Fish, R. H. Biomimetic NAD(+) models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew. Chem. 41, 478–481 (2002).

    Article  CAS  Google Scholar 

  13. Hagen, J. Industrial Catalysis: A Practical Approach 2nd edn (Wiley-VCH, 2006).

  14. Everse, J., Anderson, B. & You, K.-S. The Pyridine Nucleotide Coenzymes (Academic Press, 1982).

  15. Paul, C. E., Arends, I. W. C. E. & Hollmann, F. Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry. ACS Catal. 4, 788–797 (2014).

    Article  CAS  Google Scholar 

  16. Paul, C. E. et al. Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org. Lett. 15, 180–183 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kataoka, M. et al. Old Yellow Enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone. Biosci. Biotechnol. Biochem. 66, 2651–2657 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto, Y., Köhler, V., Paul, C. E., Hollmann, F. & Ward, T. R. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme. ACS Catal. 6, 3553–3557 (2016).

    Article  CAS  Google Scholar 

  19. Chaparro-Riggers, J. F., Rogers, T. A., Vazquez-Figueroa, E., Polizzi, K. M. & Bommarius, A. S. Comparison of three enoate reductases and their potential use for biotransformations. Adv. Synth. Catal. 349, 1521–1531 (2007).

    Article  CAS  Google Scholar 

  20. Paul, C. E. et al. Nonenzymatic regeneration of styrene monooxygenase for catalysis. ACS Catal. 5, 2961–2965 (2015).

    Article  CAS  Google Scholar 

  21. Knox, R. J. et al. Virtual cofactors for an Escherichia coli nitroreductase enzyme: relevance to reductively activated prodrugs in antibody directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 49, 1641–1647 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Ryan, J. D., Fish, R. H. & Clark, D. S. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Chem. Bio. Chem. 9, 2579–2582 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Müller, A., Stürmer, R., Hauer, B. & Rosche, B. Stereospecific alkynereduction: novel activity of old yellow enzymes. Angew. Chem. Int. Ed. 46, 3316–3318 (2007).

    Article  CAS  Google Scholar 

  24. Race, P. R. et al. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J. Biol. Chem. 280, 13256–13264 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hilt, W., Pfleiderer, G. & Fortnagel, P. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I: Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium. Biochim. Biophys. Acta 1076, 298–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Solanki, K., Abdallah, W. & Banta, S. Engineering the cofactor specificity of an alcohol dehydrogenase via single mutations or insertions distal to the 2′-phosphate group of NADP(H). Protein Eng. Des. Sel. 30, 373–380 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Schewe, H., Kaup, B. A. & Schrader, J. Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl. Microbiol. Biotechnol. 78, 55–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Pohlmann, A. et al. Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262 (2006).

    Article  PubMed  Google Scholar 

  29. Gazzaniga, F., Stebbins, R., Chang, S. Z., McPeek, M. A. & Brenner, C. Microbial NAD metabolism: lessons from comparative genomics. Microbiol. Mol. Biol. Rev. 73, 529–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorci, L. et al. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proc. Natl Acad. Sci. USA 106, 3083–3088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stott, K., Saito, K., Thiele, D. J. & Massey, V. Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins. J. Biol. Chem. 268, 6097–6106 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X. et al. Engineering Escherichia coli nicotinic acid mononucleotide adenylyltransferase for fully active amidated NAD biosynthesis. Appli. Environ. Microbiol. 83, e00692-17 (2017).

  33. Witholt, B. Method for isolating mutants overproducing nicotinamide adenine dinucleotide and its precursors. J. Bacteriol. 109, 350–364 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Grose, J. H. et al. Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica. J. Bacteriol. 187, 4521–4530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunjapur, A. M. & Prather, K. L. Microbial engineering for aldehyde synthesis. Appl. Environ. Microbiol. 81, 1892–1901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez, G. M. & Atsumi, S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25, 227–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall, M., Hauer, B., Stuermer, R., Kroutil, W. & Faber, K. Asymmetric whole-cell bioreduction of an α,β-unsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C–C lyase activities. Tetrahedron Asymmetry 17, 3058–3062 (2006).

    Article  CAS  Google Scholar 

  39. Yoshisumi, A., Wada, M., Takagi, H., Shimizu, S. & Nakamori, S. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding monovalent cation-activated levodione reductase from Corynebacterium aquaticum M-13. Biosci. Biotechnol. Biochem. 65, 830–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kulig, J., Frese, A., Kroutil, W., Pohl, M. & Rother, D. Biochemical characterization of an alcohol dehydrogenase from Ralstonia sp. Biotechnol. Bioeng. 110, 1838–1848 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Oberleitner, N., Peters, C., Rudroff, F., Bornscheuer, U. T. & Mihovilovic, M. D. In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer–Villiger monooxygenase. J. Biotechnol. 192 Pt B, 393–399 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Mak, W. S. et al. Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat. Commun. 6, 10005 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Stewart, J. D. in Future Directions in Biocatalysis (ed. T. Matsuda) Ch. 12 (Elsevier Science, 2007).

  44. Liang, K. & Shen, C. R. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab. Eng. 39, 181–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I. & Liao, J. C. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab. Eng. 14, 504–511 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, L., King, E., Luo, R. & Li, H. Development of a high-throughput, in vivo selection platform for NADPH-dependent reactions based on redox balance principles. ACS Synth. Biol. 7, 1715–1721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marinescu, G. C., Popescu, R. G., Stoian, G. & Dinischiotu, A. Beta-nicotinamide mononucleotide (NMN) production in Escherichia coli. Sci. Rep. 8, 12278 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto, K. et al. Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 A resolution. J. Biochem. 129, 303–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Richter, F., Leaver-Fay, A., Khare, S. D., Bjelic, S. & Baker, D. De novo enzyme design using Rosetta3. PloS One 6, e19230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kleffner, R. et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 33, 2765–2767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shao, Y. et al. Spartan’08, Wavefunction, Inc. Irvine, CA. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Findik, B. T. & Randall, L. L. Determination of the intracellular concentration of the export chaperone SecB in Escherichia coli. PLoS One 12, e0183231 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fischer, J., Holliday, G. & Thornton, J. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26, 2496–2497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.L. acknowledges support from University of California, Irvine, the National Science Foundation (NSF) (award no. 1847705), and the National Institutes of Health (NIH) (award no. DP2 GM137427). S.M. acknowledges support from the NSF Graduate Research Fellowship Program (grant no. DGE-1839285). W.B.B. acknowledges support from Graduate Assistance in Areas of National Need fellowship funded by the U.S. Department of Education. J.B.S., W.S.M. and Y.C. acknowledge support from the University of California, Davis, by the NSF (award nos. 1827246, 1805510, 1627539), the National Institute of Environmental Health Sciences of the NIH (award no. P42ES004699) and the NIH (award no. R01 GM 076324-11). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the NSF. We thank the University of California, Irvine Mass Spectrometry Facility and F. Grun for help with LC–MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and J.B.S. conceived the research. L.Z., W.B.B., and E.K. performed mutant enzyme kinetics characterization. W.B.B., L.Z., S.M., E.K., and B.F. performed the in vitro biotransformation. W.B.B., S.M., B.F., and A.S.M. performed the whole-cell biotransformation. W.B.B. performed the intracelluar NMN+ and NAD+ level analysis. S.M. performed the NMN+-dependent growth experiments. W.S.M. and Y.C. performed the computational modeling. All authors analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Justin B. Siegel or Han Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1–8.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, W.B., Zhang, L., Mak, W.S. et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat Chem Biol 16, 87–94 (2020). https://doi.org/10.1038/s41589-019-0402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0402-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research