Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A phase I dose finding study of intravenous voriconazole in pediatric patients undergoing hematopoietic cell transplantation

Abstract

To optimize voriconazole dosing in pediatric hematopoietic cell transplantation (HCT), we conducted a phase I study with a modified 3 + 3 dose-escalation followed by an expansion cohort at the maximum tolerated, minimum efficacious dose (MTD/MED). Patients ≤21 years who required voriconazole for prevention or treatment of an invasive fungal infection were assigned to three age groups. Of the 59 evaluable patients, 13 were <2 years, 23 were 2–11, and 23 were 12–21. Therapeutic serum voriconazole troughs (1.5–5 µg/mL) drawn at 7 days after initiation determined efficacy. The MTD/MED was 12 mg/kg/dose q12 h × 2 loading doses, then 10 mg/kg/dose q12 h in patients <2, and was 10 mg/kg/dose q12 h in patients 2–11. The 12–21 age group had no dose-limiting toxicity at 8 mg/kg/dose q12 h; however, the MED was not reached. Drug-related AEs ≥grade 3 included increased bilirubin, transaminases, and creatinine, all occurring in <10%. There was no significant association between supra-therapeutic troughs and AEs. Five of 17 patients who had supra-therapeutic troughs (29%) had an AE, compared to 8 of 42 who did not (19%, p = 0.38). Observational population pharmacokinetic analysis demonstrated that inter-individual variability on voriconazole clearance was >100% CV, and clearance increased with age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burgos A, Zaoutis TE, Dvorak CC, Hoffman JA, Knapp KM, Nania JJ, et al. Pediatric invasive aspergillosis: a multicenter retrospective analysis of 139 contemporary cases. Pediatrics. 2008;121:e1286–94.

    Article  Google Scholar 

  2. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  CAS  Google Scholar 

  3. Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficencies. Eur J Pediatr. 2007;166:1099–117.

    Article  Google Scholar 

  4. Mikulska M, Raiola AM, Bruno B, Furfaro E, Van Lint MT, Bregante S, et al. Risk factors for invasive aspergillosis and related mortality in recipients of allogeneic SCT from alternative donors: an analysis of 306 patients. Bone Marrow Transpl. 2009;44:361–70.

    Article  CAS  Google Scholar 

  5. Marr KA, Seidel K, Slavin MA, Bowden RA, Schoch HG, Flowers ME, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood. 2000;96:2055–61.

    Article  CAS  Google Scholar 

  6. van Burik JA, Carter SL, Freifeld AG, High KP, Godder KT, Papanicolaou GA, et al. Higher risk of cytomegalovirus and aspergillus infections in recipients of T cell-depleted unrelated bone marrow: analysis of infectious complications in patients treated with T cell depletion versus immunosuppressive therapy to prevent graft-versus-host disease. Biol Blood Marrow Transpl. 2007;13:1487–98.

    Article  Google Scholar 

  7. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transpl. 2009;15:1143–238.

    Article  CAS  Google Scholar 

  8. Dvorak CC, Steinbach WJ, Brown JM, Agarwal R. Risks and outcomes of invasive fungal infections in pediatric patients undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transpl. 2005;36:621–9.

    Article  CAS  Google Scholar 

  9. Hovi L, Saarinen-Pihkala UM, Vettenranta K, Saxen H. Invasive fungal infections in pediatric bone marrow transplant recipients: single center experience of 10 years. Bone Marrow Transpl. 2000;26:999–1004.

    Article  CAS  Google Scholar 

  10. Trifilio S, Singhal S, Williams S, Frankfurt O, Gordon L, Evens A, et al. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transpl. 2007;40:451–6.

    Article  CAS  Google Scholar 

  11. Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16:927–33.

    Article  CAS  Google Scholar 

  12. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–7.

    Article  CAS  Google Scholar 

  13. Chu HY, Jain R, Xie H, Pottinger P, Fredricks DN. Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC Infect Dis. 2013;13:105.

    Article  Google Scholar 

  14. Cronin S, Chandrasekar P. Safety of triazole antifungal drugs in patients with cancer. Antimicrob Chemother. 2010;65:410–6.

    Article  CAS  Google Scholar 

  15. Trifilio S, Scheetz M, Pi J, Mehta J. Tacrolimus use in adult allogeneic stem cell transplant recipients receiving voriconazole: preemptive dose modification and therapeutic drug monitoring. Bone Marrow Transpl. 2010;45:1352–6.

    Article  CAS  Google Scholar 

  16. Marty F, Lowry C, Cutler CS, Campbell BJ, Fiumara K, Baden LR, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2006;12:552–9.

    Article  CAS  Google Scholar 

  17. Hicks JK, Crews KR, Flynn P, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15:1065–78.

    Article  CAS  Google Scholar 

  18. Kim SH, Lee DG, Kwon JC, Lee HJ, Cho SY, Park C, et al. Clinical impact of cytochrome P450 2C19 genotype on the treatment of invasive aspergillosis under routine therapeutic drug monitoring of voriconazole in a Korean population. Infect Chemother. 2013;45:406–14.

    Article  CAS  Google Scholar 

  19. Teusink A, Vinks A, Zhang K, Davies S, Fukuda T, Lane A, et al. Genotype-directed dosing leads to optimized voriconazole levels in pediatric patients receiving hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2016;22:482–6.

    Article  CAS  Google Scholar 

  20. Soler-Palacin P, Frick MA, Martin-Nalda A, Lanaspa M, Pou L, Roesllo E, et al. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: a prospective study. J Antimicrob Chemother. 2012;67:700–6.

    Article  CAS  Google Scholar 

  21. Karlsson M, Lutsar I, Milligan P. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53:935–44.

    Article  CAS  Google Scholar 

  22. Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis. 2010;50:27–36.

    Article  CAS  Google Scholar 

  23. Shima H, Miharu M, Osumi T, Takahashi T, Shimada H. Differences in voriconazole trough plasma concentrations per oral dosages between children younger and older than 3 years of age. Pediatr Blood Cancer. 2010;54:1050–2.

    PubMed  Google Scholar 

  24. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, et al. Voriconazole pharmacokinetics and safety in immunocompromised children compared to adult patients. Antimicrob Agents Chemother. 2010;54:3225–32.

    Article  CAS  Google Scholar 

  25. Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56:3032–42.

    Article  CAS  Google Scholar 

  26. Decosterd LA, Rochat B, Pesse B, Mercier T, Tissot F, Widmer N, et al. Multiplex ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification in human plasma of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, anidulafungin, and caspofungin. Antimicrob Agents Chemother. 2010;54:5303–15.

    Article  CAS  Google Scholar 

  27. Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacomet Syst Pharmacol. 2014;3:e150.

    Article  CAS  Google Scholar 

  28. Johnson T, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants, and children. Clin Pharmacokinet. 2006;45:931–56.

    Article  CAS  Google Scholar 

  29. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31:540–7.

    Article  CAS  Google Scholar 

  30. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK Jr, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 2010;38:25–31.

    Article  CAS  Google Scholar 

  31. Lee S, Kim BH, Nam WS, Yoon SH, Cho JY, Shin SG, et al. Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2012;52:195–203.

    Article  CAS  Google Scholar 

  32. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49:196–204.

    Article  CAS  Google Scholar 

  33. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68:906–15.

    Article  CAS  Google Scholar 

  34. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65:281–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of the Clinical Pharmacology Shared Resource of the Masonic Cancer Center, designated by the National Cancer Institute, supported in part by P30 CA77598.

Funding

This work was supported by the Hematology Oncology Pharmacist Association (HOPA) Foundation (MNK), and the Department of Pediatrics, Division of Blood and Marrow Transplant, University of Minnesota (ARS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Knight-Perry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight-Perry, J., Jennissen, C., Long, S.E. et al. A phase I dose finding study of intravenous voriconazole in pediatric patients undergoing hematopoietic cell transplantation. Bone Marrow Transplant 55, 955–964 (2020). https://doi.org/10.1038/s41409-019-0757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0757-0

This article is cited by

Search

Quick links