Skip to main content
Log in

Oxidation of 60Si2MnA Steel in Atmospheres Containing Different Levels of Oxygen, Water Vapour and Carbon Dioxide at 700–1000 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behaviour of the spring steel 60Si2MnA in atmospheres containing 0–21% (volume per cent) O2, < 20 ppm (part per million) to 17%H2O, with some containing 8%CO2, at 700–1000 °C was investigated. The oxide scale thicknesses formed in both 17%H2O–N2 and dry O2-containing atmospheres were less than 6 μm after 20 min of oxidation, significantly smaller than those formed in atmospheres containing both oxygen and water vapour, and the scale structures developed in the three different scenarios were also very different. The scale formed in 17%H2O–N2 contained wustite only, the scale formed in dry O2-containing atmospheres comprised primarily hematite and some magnetite, and that in O2–H2O mixtures developed a multi-layered structure, generally with an innermost Fe2SiO4 + FeO layer, followed by FeO/Fe3O4/Fe2O3 layers towards the scale surface. A preformed oxide scale and the presence of 8%CO2 in the atmosphere had little effects on further steel oxidation. The mechanisms of forming different scale structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chinese National Standard, GB/T 1222—2016: Spring Steels, (2017).

  2. M. Assefpour-Dezfuly and A. Brownrigg, Metallurgical Transactions A20A, 1951 (1989).

    Article  CAS  Google Scholar 

  3. A. Brownrigg and T. Sritharan, Material Forum10, 58 (1987).

    CAS  Google Scholar 

  4. M. J. Geldersleeve, Materials Science and Technology7, 307 (1991).

    Article  Google Scholar 

  5. M. Nomura, H. Morimoto and M. Toyama, ISIJ International40, 619 (2000).

    Article  CAS  Google Scholar 

  6. D. Li, D. Anghelina, D. Burzic, J. Zamberger, R. Kienreich, H. Schifferi, W. Krieger and E. Kozeschnik, Steel Research International80, 298 (2009).

    CAS  Google Scholar 

  7. D. Li, D. Anghelina, D. Burzic, W. Krieger and E. Kozeschnik, Steel Research International80, 304 (2009).

    CAS  Google Scholar 

  8. C. Zhang, Y. Liu, L. Zhou, C. Jiang and J. Xiao, International Journal of Minerals, Metallurgy and Materials19, 116 (2012).

    Article  CAS  Google Scholar 

  9. C. Zhang, L. Zhou and Y. Liu, International Journal of Minerals, Metallurgy and Materials20, 720 (2013).

    Article  CAS  Google Scholar 

  10. S. Choi and S. Zwaag, ISIJ International52, 549 (2012).

    Article  CAS  Google Scholar 

  11. S. Choi and Y. Lee, ISIJ International54, 1682 (2014).

    Article  CAS  Google Scholar 

  12. X. Shi, L. Zhao, W. Wang, B. Zeng, L. Zhao, Y. Shan, M. Shen and K. Yang, Transactions of Materials and Heat Treatment34(7), 47 (2013) (in Chinese).

    Google Scholar 

  13. Y. Liu, W. Zhang, Q. Tong and L. Wang, ISIJ International54, 1920 (2014).

    Article  CAS  Google Scholar 

  14. Y. Liu, W. Zhang, Q. Tong and Q. Sun, International Journal of Iron and Steel Research23, 1316 (2016).

    Article  Google Scholar 

  15. F. Zhao, C. L. Zhang, Q. Xiu, Y. Tan, S. Zhang and Y. Z. Liu, Materials Science Forum817, 132 (2015).

    Article  Google Scholar 

  16. F. Zhao, C. L. Zhang and Y. Z. Liu, Archives of Metallurgy and Materials61, 1715 (2016).

    Article  Google Scholar 

  17. W. A. Pennington, Transactions of the American Society for Metals37, 48 (1946).

    Google Scholar 

  18. N. Birks, Decarburization, Vol. 133 (ISI Publication, 1969), p. 1.

  19. N. Birks, G. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 1st edn. (Edward Arnold, London, 1983), p. 175; 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 151.

  20. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals59, 433 (2003).

    Article  CAS  Google Scholar 

  21. A. Rahmel and J. Tobolski, Werkstoffe und Korrosion16, 662 (1965).

    Article  CAS  Google Scholar 

  22. A. Rahmel, Werkstoffe und Korrosion16, 837 (1965).

    Article  CAS  Google Scholar 

  23. M. Fukumoto, S. Maeda, S. Hayashi and T. Narita, Tetsu-to-Hagane86, 526 (2000).

    Article  CAS  Google Scholar 

  24. A. A. Mouayd, A. Koltsov, E. Sutter and B. Tribollet, Materials Chemistry and Physics143, 996 (2014).

    Article  Google Scholar 

  25. J. Baud, A. Ferrier, J. Manenc and J. Bénard, Oxidation of Metals9, 69 (1975).

    Article  CAS  Google Scholar 

  26. Y. R. Chen, X. Xu, and Y. Liu, Oxidation of Metals (2019).

  27. F. D. Richardson and J. H. E. Jeffes, Journal of Iron and Steel Institute160, 261 (1948).

    CAS  Google Scholar 

  28. R. Sydenham, Specifications of Various Experimental Gases (BOC limited, Australia) (2011).

  29. R. Y. Chen and W. Y. D. Yuen, ISIJ International45, 52 (2005).

    Article  CAS  Google Scholar 

  30. R. Y. Chen and W. Y. D. Yuen, Metallurgical and Materials Transactions A40A, 3091 (2009).

    Article  CAS  Google Scholar 

  31. R. Y. Chen, Unpublished results (2019).

  32. B. Pieraggi, Oxidation of Metals27, 177 (1987).

    Article  CAS  Google Scholar 

  33. B. Gleeson, R. K. Singh Raman and D. J. Young, CAMP-ISIJ16, 1345 (2003).

    Google Scholar 

  34. L. S. Darken, Transactions of the American Institute of Mining and. Metallurgical Engineers150, 157 (1942).

    Google Scholar 

  35. C. Wagner, Zeitschrift für Elektrochemie63, 772 (1959).

    CAS  Google Scholar 

  36. A. Atkinson, Corrosion Science22, 87 (1982).

    Article  CAS  Google Scholar 

  37. A. E. Hughes, Corrosion Science22, 103 (1982).

    Article  CAS  Google Scholar 

  38. J. S. Sheasby, W. E. Boggs and E. T. Turkdogan, Metal Science18, 127 (1984).

    Article  CAS  Google Scholar 

  39. J. Takada and M. Adachi, Journal of Materials Science21, 2133 (1986).

    Article  CAS  Google Scholar 

  40. H. Li, J. Zhang and D. J. Young, Materials at High Temperatures28, 297 (2011).

    Article  Google Scholar 

  41. H. Li, J. Zhang and D. J. Young, Corrosion Science54, 127 (2012).

    Article  CAS  Google Scholar 

  42. K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi and X. Guo, ISIJ International47, 1329 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng R. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.R., Liu, Y. & Xu, X. Oxidation of 60Si2MnA Steel in Atmospheres Containing Different Levels of Oxygen, Water Vapour and Carbon Dioxide at 700–1000 °C. Oxid Met 93, 53–74 (2020). https://doi.org/10.1007/s11085-019-09944-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09944-8

Keywords

Navigation