Skip to main content
Log in

Irreversible linear pathways in enzymatic reactions: analytical solution using the homotopy perturbation method

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the Homotopy Perturbation method is used for the first time to solve an irreversible linear pathway with enzyme kinetics. The enzymatic system has Michaelis–Menten kinetics and is modeled by a system of nonlinear ordinary differential equations. The analytical solution obtained with the method allow us to optimize several objectives: minimal time to reach a certain percent of final product, minimal amount of enzymes employed in the process, or even multiple objective optimization via Pareto front. We present an example to demonstrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Rajendran, M.C. Devi, C. Fernandez, Q. Peng, in Mathematical Modeling and Simulation of Nonlinear Process in Enzyme Kinetics in Advanced Chemical Kinetics, ed. by M. Akhyar Farrukh (InTech, Rijeka, 2018), p. 21

    Google Scholar 

  2. A. Meena, A. Eswari, L. Rajendran, Mathematical modelling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations. J. Math. Chem. 48(2), 179–186 (2010)

    Article  CAS  Google Scholar 

  3. R. Heinrich, S.M. Rapoport, T.A. Rapoport, Metabolic regulation and mathematical models. Progr. Biophys. Mol. Biol. 32, 1–82 (1977)

    Article  CAS  Google Scholar 

  4. K. Bhattacharyya, S. Dhatt, Enzyme kinetics: a critique of the quasi-steady-state approximation (2013). arXiv preprint arXiv:1305.0929

  5. J.A.M. Borghans, R.J. De Boer, L.A. Segel, Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  CAS  Google Scholar 

  6. H.P. Kasserra, K.J. Laidler, Transient-phase studies of a trypsin-catalyzed reaction. Can. J. Chem. 48, 1793–1802 (1970)

    Article  CAS  Google Scholar 

  7. S. Schnell, Validity of the Michaelis–Menten equation—steady-state or reactant stationary assumption: that is the question. FEBS J. 281, 464–472 (2014)

    Article  CAS  Google Scholar 

  8. M.U. Maheswari, L. Rajendran, Analytical solution of non-linear enzyme reaction equations arising in mathematical chemistry. J. Math. Chem. 49(8), 1713 (2011)

    Article  CAS  Google Scholar 

  9. G. Varadharajan, L. Rajendran, Analytical solution of coupled non-linear second order reaction differential equations in enzyme kinetics. Nat. Sci. 3(6), 459–465 (2011)

    CAS  Google Scholar 

  10. S. Khoshnaw, Iterative approximate solutions of kinetic equations for reversible enzyme reactions (2012). arXiv preprint arXiv:1208.0747

  11. A. Alawneh, Application of the multistep generalized differential transform method to solve a time-fractional enzyme kinetics. Discrete Dyn. Nat. Soc. (2013). https://doi.org/10.1155/2013/592938

    Article  Google Scholar 

  12. G. de Hijas-Liste, E. Klipp, E. Balsa-Canto, J. Banga, Global dynamic optimization approach to predict activation in metabolic pathways. BMC Syst. Biol. 8(1), 1–15 (2014)

    Article  Google Scholar 

  13. J.H. He, Homotopy perturbation technique. Comput. Math. Appl. Mech. Eng. 178, 257–262 (1999)

    Article  Google Scholar 

  14. J.H. He, Homotopy perturbation method: a new nonlinear analytical Technique. Appl. Math. Comput. 135, 73–79 (2003)

    Google Scholar 

  15. M.A. Savageau, Michaelis–Menten mechanism reconsidered: implications of fractal kinetics. J. Theor. Biol. 176(1), 115–124 (1995)

    Article  CAS  Google Scholar 

  16. L. Bayón, J.A. Otero, P.M. Suárez, C. Tasis, Solving linear unbranched pathways with Michaelis–Menten kinetics using the Lambert W-function. J. Math. Chem. 54(7), 1351–1369 (2016)

    Article  Google Scholar 

  17. L. Menten, M.I. Michaelis, Die kinetik der invertinwirkung. Biochem Z. 49, 333–369 (1913)

    Google Scholar 

  18. S. Schnell, P.K. Maini, Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000)

    Article  CAS  Google Scholar 

  19. A. Sillero, V. García-Herrero, Theoretical evaluation of both unknown substrate concentrations and enzyme kinetic constants of metabolic cycles. J. Biomed. Sci. Eng. 8(08), 479 (2015)

    Article  Google Scholar 

  20. R.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization: new insights. Struct. Multidisc. Optim. 41, 853–862 (2010)

    Article  Google Scholar 

  21. Z. Ayati, J. Biazar, On the convergence of homotopy perturbation method. J. Egypt. Math. Soc. 23, 424–428 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bayón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Annex I: dataset

Annex I: dataset

Table 1 shows, as explained in Eq. (67), the list of the maxima \(M_{1,k}=\max |u_{1,k}(\tau )|\), \(N_{1,k}=|v_{1,k}(\tau )|\), for \(\tau \in [0,6]\), corresponding to the first stage of case (2) (i.e. Sect. 5.2).

Table 1 Convergence for the first stage of reaction (2)

Table 2 shows the same data for the second stage of the same reaction, \(M_{2,k}=\max |u_{2,k}(\tau )|\), \(N_{2,k}=|v_{2,k}(\tau )|\), for \(\tau \in [1.55,6]\).

Table 2 Convergence for the first stage of reaction (2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayón, L., Fortuny Ayuso, P., Grau, J.M. et al. Irreversible linear pathways in enzymatic reactions: analytical solution using the homotopy perturbation method. J Math Chem 58, 273–291 (2020). https://doi.org/10.1007/s10910-019-01080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01080-7

Keywords

Mathematics Subject Classification

Navigation