Skip to main content
Log in

Microencapsulation of Garlic Extract by Complex Coacervation Using Whey Protein Isolate/Chitosan and Gum Arabic/Chitosan as Wall Materials: Influence of Anionic Biopolymers on the Physicochemical and Structural Properties of Microparticles

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to encapsulate garlic extract by complex coacervation method using whey protein isolate (WPI)/chitosan (CH) and gum Arabic (GA)/CH as wall materials. Two anionic biopolymers (GA and WPI) were used to find the most suitable wall materials to interact electrostatically with cationic CH. The complex coacervates were freeze-dried to obtain microparticles powders. The microparticles were examined for the nitrogen adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), sorption isotherms, zeta potential, antioxidant activity, total phenolic content, solubility, moisture content, hygroscopicity, size distribution, and water activity. X-ray diffractograms evidenced microparticles with amorphous structure. WPI/CH and GA/CH microparticles showed surface area of 2.23 and 2.40 m2 g−1 and mean pore diameter of 5.20 and 5.37 nm, respectively. The nitrogen adsorption/desorption assay showed that microparticles presented mesopores and macropores that resulted in quick completion of microparticles surface monolayer with nitrogen. The sorption characteristics of microparticles followed the type II isotherm and Guggenheim-Anderson-de Boer (GAB) model was the best model to fit the experimental data. FTIR spectrum of microparticles reveals physical interactions between garlic compounds and functional groups of wall materials, indicating that garlic compounds were intact and encapsulated. TGA results indicated that the wall materials were effective in protecting the garlic sensitive compounds. The negative carboxyl groups (–COO) of GA were better than WPI for coacervation with positive amino groups (NH3+) of chitosan in terms of less hygroscopicity, smaller particle size, and higher retention of garlic phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alishahi, A., & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5(3), 817–830.

    Article  CAS  Google Scholar 

  • Almeida, C. M., Magalhães, J. M., Souza, H. K., & Gonçalves, M. P. (2018). The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 81, 456–466.

    Article  CAS  Google Scholar 

  • Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. The Journal of Nutrition, 131(3), 955S–962S.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. B. (1946). Modifications of the Brunauer, Emmett and Teller equation1. Journal of the American Chemical Society, 68(4), 686–691.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis of the association of official analytical chemists. Washington, DC: AOAC.

    Google Scholar 

  • Arthur, E., Tuller, M., Moldrup, P., Greve, M. H., Knadel, M., & de Jonge, L. W. (2018). Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area. European Journal of Soil Science, 69(2), 245–255.

    Article  CAS  Google Scholar 

  • Azizi, M., Kierulf, A., Lee, M. C., & Abbaspourrad, A. (2018). Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chemistry, 246, 448–456.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramani, P., Palaniswamy, P., Visvanathan, R., Thirupathi, V., Subbarayan, A., & Maran, J. P. (2015). Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules, 72, 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380.

    Article  CAS  Google Scholar 

  • Bastos, D. S., Barreto, B. N., Souza, H. K., Bastos, M., Rocha-Leão, M. H. M., Andrade, C. T., et al. (2010). Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate. Food Hydrocolloids, 24(8), 709–718.

    Article  CAS  Google Scholar 

  • Borrmann, D., Pierucci, A. P. T. R., Leite, S. G. F., & da Rocha Leão, M. H. M. (2013). Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food and Bioproducts Processing, 91(1), 23–27.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  • Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732.

    Article  CAS  Google Scholar 

  • Burgess, D. (1990). Practical analysis of complex coacervate systems. Journal of Colloid and Interface Science, 140(1), 227–238.

    Article  CAS  Google Scholar 

  • Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608–616.

    Article  CAS  PubMed  Google Scholar 

  • Cabuk, M., Yavuz, M., & Unal, H. I. (2016). Electrokinetic, electrorheological and viscoelastic properties of Polythiophene-graft-Chitosan copolymer particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 231–238.

    Article  CAS  Google Scholar 

  • Cai, Y., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.

    Article  CAS  Google Scholar 

  • Cano-Chauca, M., Stringheta, P., Ramos, A., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.

    Article  CAS  Google Scholar 

  • Chang, S.-H., Wu, C.-H., & Tsai, G.-J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers, 181, 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Chi, Y.-J., & Xu, W. (2012). Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food and Bioprocess Technology, 5(6), 2342–2352.

    Article  CAS  Google Scholar 

  • Chen, C., Liu, C.-H., Cai, J., Zhang, W., Qi, W.-L., Wang, Z., et al. (2018). Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts. Food Control, 86, 117–125.

    Article  CAS  Google Scholar 

  • Choi, Y.-R., & Chang, Y. H. (2018). Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocolloids, 85, 222–228.

    Article  CAS  Google Scholar 

  • da Costa, J. M. G., Silva, E. K., Hijo, A. A. C. T., Azevedo, V. M., Malta, M. R., Alves, J. G. L. F., et al. (2015). Microencapsulation of Swiss cheese bioaroma by spray-drying: process optimization and characterization of particles. Powder Technology, 274, 296–304.

    Article  CAS  Google Scholar 

  • Damodaran, S., & Parkin, K. L. (2017). Fennema’s food chemistry. Boca Raton: CRC Press.

    Google Scholar 

  • de Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., et al. (2017). Whey protein as a key component in food systems: physicochemical properties, production technologies and applications. Food Structure, 14, 17–29.

    Article  Google Scholar 

  • de Souza, H. K., Bai, G., & do Pilar Gonçalves, M., & Bastos, M. (2009). Whey protein isolate–chitosan interactions: a calorimetric and spectroscopy study. Thermochimica Acta, 495(1), 108–114.

  • Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2014). Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food & Function, 5(11), 2743–2750.

    Article  CAS  Google Scholar 

  • Eratte, D., Dowling, K., Barrow, C. J., & Adhikari, B. (2018). Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends in Food Science & Technology, 71, 121–131.

    Article  CAS  Google Scholar 

  • Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541–546.

    Article  CAS  Google Scholar 

  • Ezhilarasi, P., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6, 628–647.

    Article  CAS  Google Scholar 

  • Fernandes, R. V. d. B., Borges, S. V., Botrel, D. A., & Oliveira, C. R. d. (2014). Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers. International Journal of Food Science & Technology, 49(6), 1522–1529.

    Article  CAS  Google Scholar 

  • Fernandes, R. V. d. B., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., et al. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 94, 413–423.

    Article  CAS  Google Scholar 

  • Fu, J., Xu, Q., Chen, J., Chen, Z., Huang, X., & Tang, X. (2010). Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chemical Communications, 46(35), 6563–6565.

    Article  CAS  PubMed  Google Scholar 

  • Gámiz-González, M., Correia, D. M., Lanceros-Mendez, S., Sencadas, V., Ribelles, J. G., & Vidaurre, A. (2017). Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 167, 52–58.

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez, D., Carrillo-Navas, H., Barrera-Díaz, C., Martínez-Vargas, S., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Characterization of a novel complex coacervate based on whey protein isolate-tamarind seed mucilage. Food Hydrocolloids, 72, 115–126.

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539.

    Article  CAS  PubMed  Google Scholar 

  • Ilić, J. D., Nikolovski, B. G., Petrović, L. B., Kojić, P. S., Lončarević, I. S., & Petrović, J. S. (2017). The garlic (A. sativum L.) extracts food grade W1/O/W2 emulsions prepared by homogenization and stirred cell membrane emulsification. Journal of Food Engineering, 205, 1–11.

    Article  CAS  Google Scholar 

  • Kang, Y.-R., Lee, Y.-K., Kim, Y. J., & Chang, Y. H. (2019). Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chemistry, 272, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Khem, S., Small, D. M., & May, B. K. (2016). The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food Chemistry, 190, 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Kinalski, T., & Noreña, C. P. Z. (2014). Effect of blanching treatments on antioxidant activity and thiosulfinate degradation of garlic (Allium sativum L.). Food and Bioprocess Technology, 7, 2152–2157.

    Article  CAS  Google Scholar 

  • Kinalski, T., & Noreña, C. P. Z. (2019). Effect of spray drying encapsulation of garlic extract on inulin and thiosulfinates contents. Food and Bioprocess Technology, 13, 2438–2447.

    Google Scholar 

  • Koç, B., Yilmazer, M. S., Balkır, P., & Ertekin, F. K. (2010). Moisture sorption isotherms and storage stability of spray-dried yogurt powder. Drying Technology, 28(6), 816–822.

    Article  CAS  Google Scholar 

  • Krishnamachari, Y., Madan, P., & Lin, S. (2007). Development of pH-and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. International Journal of Pharmaceutics, 338(1-2), 238–247.

    Article  CAS  PubMed  Google Scholar 

  • Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576.

    Article  CAS  PubMed  Google Scholar 

  • Lago, C. C., & Noreña, C. P. Z. (2015). Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Bioscience, 12, 26–33.

    Article  CAS  Google Scholar 

  • Lam, B., Déon, S., Morin-Crini, N., Crini, G., & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 171, 927–933.

    Article  CAS  Google Scholar 

  • Lanzotti, V. (2006). The analysis of onion and garlic. Journal of Chromatography A, 1112(1-2), 3–22.

    Article  CAS  PubMed  Google Scholar 

  • Lewicki, P. P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science & Technology, 32(6), 553–557.

    Article  CAS  Google Scholar 

  • Liu, X., Xiong, J., & Liang, L. (2015). Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. Journal of Natural Gas Science and Engineering, 22, 62–72.

    Article  CAS  Google Scholar 

  • Lomauro, C., Bakshi, A., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations part II: milk, coffee, tea, nuts, oilseeds, spices and starchy foods. LWT- Food Science and Technology, 18(2), 118–124.

    Google Scholar 

  • Lu, X., Ross, C. F., Powers, J. R., Aston, D. E., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance–Fourier transformed infrared spectroscopy. Journal of Agricultural and Food Chemistry, 59(10), 5215–5221.

    Article  CAS  PubMed  Google Scholar 

  • Martins, N., Petropoulos, S., & Ferreira, I. C. F. R. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Meng, F., Wang, S., Liu, H., Xu, X., & Ma, H. (2017). Microencapsulation of oxalic acid (OA) via coacervation induced by polydimethylsiloxane (PDMS) for the sustained release performance. Materials & Design, 116, 31–41.

    Article  CAS  Google Scholar 

  • Montano, A., Beato, V. M., Mansilla, F., & Orgaz, F. (2011). Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain. Journal of Agricultural and Food Chemistry, 59(4), 1301–1307.

    Article  CAS  PubMed  Google Scholar 

  • Niu, F., Niu, D., Zhang, H., Chang, C., Gu, L., Su, Y., et al. (2016). Ovalbumin/gum arabic-stabilized emulsion: rheology, emulsion characteristics, and Raman spectroscopic study. Food Hydrocolloids, 52, 607–614.

    Article  CAS  Google Scholar 

  • Noreña, C. P. Z., Bayarri, S., & Costell, E. J. F. B. (2015). Effects of xanthan gum additions on the viscoelasticity, structure and storage stability characteristics of prebiotic custard desserts. Food Biophysics, 10(2), 116–128.

    Article  Google Scholar 

  • Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K.-M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4), 485–493.

    Article  CAS  Google Scholar 

  • Peng, X., Li, R., Zou, R., Chen, J., Zhang, Q., Cui, P., et al. (2014). Allicin inhibits microbial growth and oxidative browning of fresh-cut lettuce (Lactuca sativa) during refrigerated storage. Food and Bioprocess Technology, 7(6), 1597–1605.

    Article  CAS  Google Scholar 

  • Peniche, C., Argüelles-Monal, W., Peniche, H., & Acosta, N. (2003). Chitosan: an attractive biocompatible polymer for microencapsulation. Macromolecular Bioscience, 3(10), 511–520.

    Article  CAS  Google Scholar 

  • Piletti, R., Zanetti, M., Jung, G., de Mello, J. M. M., Dalcanton, F., Soares, C., Riella, H. G., & Fiori, M. A. (2019). Microencapsulation of garlic oil by β-cyclodextrin as a thermal protection method for antibacterial action. Materials Science and Engineering: C, 94, 139–149.

    Article  CAS  Google Scholar 

  • Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies, 36, 287–293.

    Article  CAS  Google Scholar 

  • Pinilla, C. M. B., Noreña, C. P. Z., & Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, 470–476.

    Article  CAS  PubMed  Google Scholar 

  • Premi, M., & Sharma, H. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105, 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  • Quispe-Condori, S., Saldaña, M. D., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT- Food Science and Technology, 44(9), 1880–1887.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.

    Article  CAS  Google Scholar 

  • Rocha-Selmi, G. A., Theodoro, A. C., Thomazini, M., Bolini, H. M., & Favaro-Trindade, C. S. (2013). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. Journal of Food Engineering, 119(1), 28–32.

    Article  CAS  Google Scholar 

  • Santhosha, S. G., Jamuna, P., & Prabhavathi, S. N. (2013). Bioactive components of garlic and their physiological role in health maintenance: a review. Food Bioscience, 3, 59–74.

    Article  CAS  Google Scholar 

  • Santos, M. G., Bozza, F. T., Thomazini, M., & Favaro-Trindade, C. S. (2015). Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, 171, 32–39.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Li, C., Zhang, L., Huang, T., Ma, D., Tu, Z.-c., et al. (2017). Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum (gum arabic). Food Hydrocolloids, 65, 10–16.

    Article  CAS  Google Scholar 

  • Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619.

    Article  CAS  Google Scholar 

  • Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Spiess, W., & Wolf, W. (1983). Results of the COST 90 project on water activity. In R. Jowitt (Ed.), Physical properties of foods. London: Applied Science Publishers.

    Google Scholar 

  • Szulińska, M., Kręgielska-Narożna, M., Świątek, J., Styś, P., Kuźnar-Kamińska, B., Jakubowski, H., Walkowiak, J., & Bogdański, P. (2018). Garlic extract favorably modifies markers of endothelial function in obese patients–randomized double blind placebo-controlled nutritional intervention. Biomedicine & Pharmacotherapy, 102, 792–797.

    Article  CAS  Google Scholar 

  • Tan, C., Xie, J., Zhang, X., Cai, J., & Xia, S. (2016). Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 57, 236–245.

    Article  CAS  Google Scholar 

  • Tavares, L., & Noreña, C. P. Z. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89, 360–369.

    Article  CAS  Google Scholar 

  • Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2018). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286.

    Article  PubMed  CAS  Google Scholar 

  • Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., et al. (2018). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941–950.

    Article  PubMed  CAS  Google Scholar 

  • Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418.

    Article  Google Scholar 

  • Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950–1958.

    Article  CAS  Google Scholar 

  • Włodarczyk-Stasiak, M., Mazurek, A., Pankiewicz, U., Sujka, M., & Jamroz, J. (2014). Porosity of starch–proteins extrudates determined from nitrogen adsorption data. Food Hydrocolloids, 36, 308–315.

    Article  CAS  Google Scholar 

  • Wolf, W., Spiess, W., & Jung, G. (1985). Standardization of isotherm measurements (COST-project 90 and 90 bis). In D. Simatos & J. L. Multon (Eds.), Properties of water in foods (pp. 661–679). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Xu, D., Aihemaiti, Z., Cao, Y., Teng, C., & Li, X. (2016). Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chemistry, 202, 156–164.

    Article  CAS  PubMed  Google Scholar 

  • Young, J. F. (1967). Humidity control in the laboratory using salt solutions—a review. Journal of Applied Chemistry, 17(9), 241–245.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Primex (Siglufjordur, Iceland) and Arla Foods Ingredients for donating chitosan and whey proteins isolates, respectively.

Funding

The authors received financial support provided by CNPq and FAPERGS. Loleny Tavares received scholarship funding from the CAPES/CNPq-Programa Estudantes-Convênio de Pós-Graduação (PEC-PG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caciano Pelayo Zapata Noreña.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, L., Barros, H.L.B., Vaghetti, J.C.P. et al. Microencapsulation of Garlic Extract by Complex Coacervation Using Whey Protein Isolate/Chitosan and Gum Arabic/Chitosan as Wall Materials: Influence of Anionic Biopolymers on the Physicochemical and Structural Properties of Microparticles. Food Bioprocess Technol 12, 2093–2106 (2019). https://doi.org/10.1007/s11947-019-02375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02375-y

Keywords

Navigation