Skip to main content
Log in

Effects of Pulsed Electric Fields on Vacuum Drying and Quality Characteristics of Dried Carrot

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigates the effect of pulsed electric fields (PEF) on the kinetics of vacuum drying (VD) of carrot and on the preservation of the quality of dried carrot tissue. The impacts of PEF-treatment and VD on β-carotene content and color of carrot samples were studied. PEF treatment was applied with intensity E = 0.6 kV/cm and total treatment time tPEF = 0.1 s to reach a high level of carrot tissue electroporation. The VD was applied at the pressure p = 0.3 bar for different temperatures, Td = 25, 50, 75, and 90 °C. The spectrophotometric method was used to determine the β-carotene content. The color was measured using the CIE L* a* b* method. Obtained results indicated that PEF treatment let to a noticeable decrease of drying time (by 33–55% at Td = 25–90 °C). The activation energy was found to be 18.25 kJ/mol and 13.4 kJ/mol for untreated and PEF-pretreated samples, respectively. The reduction of drying time by PEF pretreatment was beneficial for the retention of β-carotene in dried samples. The application of PEF treatment resulted in smaller changes in color ∆E as compared with untreated samples; this tendency was observed for all studied temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a* :

Color coordinate redness or greenness at time t

a* 0 :

Color coordinate redness or greenness of fresh carrot

A :

Drying coefficients

Abs :

Absorbance

b* :

Color coordinate yellowness or blueness at time t

b* 0 :

Color coordinate yellowness or blueness of fresh carrot

d :

Dilution factor

C i :

Initial wet basis water content, g/g

E :

Electric field strength, kV/cm

△E :

Total color difference

E a :

Activation energy of the moisture diffusion, kJ/mol

\( {E}_{1 cm}^{1\%} \) :

Molar extinction coefficient, L/mol

k :

Drying rate constant, s-1

k 0 :

Arrhenius factor, s-1;

L* :

Color coordinate whiteness or brightness at time t

L* 0 :

Color coordinate whiteness or brightness of fresh carrot

m :

Mass of the sample, g

m i :

Initial mass of the sample, g

m d :

Mass of dry matter, g

MW :

Molecular weight of β-carotene, g/mol

n :

Number of pulses

N :

Number of trains

p :

Pressure, bar

R :

Universal gas constant, kJ∙mol-1∙K-1

t d :

Drying time, s

t d(U) :

Drying time for untreated sample

t d(PEF) :

Drying time for PEF treated sample

t e :

Extraction time, s

t i :

Pulse duration, μs

t PEF :

Total time of PEF treatment, s

T a :

Absolute drying air temperature, K

T d :

Drying temperature, °C

Δt :

Interval between pulses, ms

V :

Total extract volume, L

w :

Moisture ratio

w U :

Final moisture ratio for untreated sample

w PEF :

Final moisture ratio for PEF treated sample

X :

Moisture content gH2O/g DM

X i :

Initial moisture content, gH2O/g DM

λ :

Wavelength, nm

DM:

Dry matter

PEF:

Pulsed electric fields

U:

Untreated samples

VD :

Vacuum drying

WB:

Wet basis

References

  • AOAC (2000). Official methods of analysis (17th ed.). Gaithersburg, MD, USA: Association of Official Analytical Chemists.

  • Ade-Omowaye, B. I. O., Rastogi, N. K., Angersbach, A., & Knorr, D. (2002). Osmotic dehydration of bell peppers: influence of high intensity electric field pulses and elevated temperature treatment. Journal of Food Engineering, 54(1), 35–43.

    Google Scholar 

  • Arikan, M. F., Ayhan, Z., Soysal, Y., & Esturk, O. (2012). Drying characteristics and quality parameters of microwave-dried grated carrots. Food and Bioprocess Technology, 5(8), 3217–3229.

    Google Scholar 

  • Babalis, S. J., & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 65(3), 449–458.

    Google Scholar 

  • Ben Ammar, J., Lanoisellé, J.-L., Lebovka, N. I., Van Hecke, E., & Vorobiev, E. (2011). Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. Journal of Food Science, 76(1), E90–E97.

    CAS  PubMed  Google Scholar 

  • Breithaupt, D. E., & Bamedi, A. (2001). Carotenoid esters in vegetables and fruits: a screening with emphasis on β-cryptoxanthin esters. Journal of Agricultural and Food Chemistry, 49(4), 2064–2070.

    CAS  PubMed  Google Scholar 

  • Choi, M. H., Kim, G. H., & Lee, H. S. (2002). Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Research International, 35(8), 753–759.

    CAS  Google Scholar 

  • Christensen, L. P., & Brandt, K. (2006). Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(3), 683–693.

    CAS  PubMed  Google Scholar 

  • Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., Chou, S. K., & Ho, J. C. (2001). Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Research International, 34(8), 721–731.

    Google Scholar 

  • Cui, Z.-W., Xu, S.-Y., & Sun, D.-W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22(3), 563–575.

    Google Scholar 

  • El Darra, N., Grimi, N., Maroun, R. G., Louka, N., & Vorobiev, E. (2013). Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. European Food Research and Technology, 236(1), 47–56.

    Google Scholar 

  • El Kantar, S., Boussetta, N., Lebovka, N., Foucart, F., Rajha, H. N., Maroun, R. G., et al. (2017). Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innovative Food Science & Emerging Technologies, 46, 153–161.

  • Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82(2), 261–267.

    Google Scholar 

  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470.

    Google Scholar 

  • Fikselova, M., Silhar, S., Marecek, J., & Francakova, H. (2008). Extraction of carrot (Daucus carota L.) carotenes under different conditions. Czech J. Food Science, 26(4), 268–274.

    CAS  Google Scholar 

  • Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., & Snow, D. (2010). Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Journal of Food Science, 75(6), E323–E329.

    CAS  PubMed  Google Scholar 

  • Hammami, C., & René, F. (1997). Determination of freeze-drying process variables for strawberries. Journal of Food Engineering, 32(2), 133–154.

    Google Scholar 

  • Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98–108.

    Google Scholar 

  • Kaya, A., Aydin, O., & Demirtacs, C. (2009). Experimental and theoretical analysis of drying carrots. Desalination, 237(1–3), 285–295.

    CAS  Google Scholar 

  • Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). Shrinkage characteristics of potatos dehydrated under combined microwave and convective air conditions. Drying Technology, 15(3–4), 1003–1022.

    Google Scholar 

  • Kobæk-Larsen, M., Christensen, L. P., Vach, W., Ritskes-Hoitinga, J., & Brandt, K. (2005). Inhibitory effects of feeding with carrots or (-)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. Journal of Agricultural and Food Chemistry, 53(5), 1823–1827.

    PubMed  Google Scholar 

  • Lebovka, N. I., Shynkaryk, M. V., & Vorobiev, E. (2006). Drying of potato tissue pretreated by ohmic heating. Drying Technology, 24(5), 601–608.

    Google Scholar 

  • Lebovka, N. I., Shynkaryk, M. V., & Vorobiev, E. (2007). Pulsed electric field enhanced drying of potato tissue. Journal of Food Engineering, 78(2), 606–613.

    Google Scholar 

  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117.

    Google Scholar 

  • Litvin, S., Mannheim, C. H., & Miltz, J. (1998). Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of Food Engineering, 36(1), 103–111.

    Google Scholar 

  • Liu, C., Grimi, N., Lebovka, N., & Vorobiev, E. (2018a). Convective air, microwave, and combined drying of potato pre-treated by pulsed electric fields. Drying Technology, 37(13), 1–10.

  • Liu, C., Grimi, N., Lebovka, N., & Vorobiev, E. (2018b). Effects of pulsed electric fields treatment on vacuum drying of potato tissue. LWT, 95, 289294.

    CAS  Google Scholar 

  • Marfil, P. H. M., Santos, E. M., & Telis, V. R. N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT- Food Science and Technology, 41(9), 1642–1647.

    CAS  Google Scholar 

  • Mishra, P., Singh, N. K., et al. (2010). Spectrophotometric and tlc based characterization of kernel carotenoids in short duration maize. Maydica, 55(2), 95.

    Google Scholar 

  • Mudahar, G. S., Toledo, R. T., Floros, J. D., & Jen, J. J. (1989). Optimization of carrot dehydration process using response surface methodology. Journal of Food Science, 54(3), 714–719.

    Google Scholar 

  • Park, Y. W. (1987). Effect of freezing, thawing, drying, and cooking on carotene retention in carrots, broccoli and spinach. Journal of Food Science, 52(4), 1022–1025.

    Google Scholar 

  • Parniakov, O., Bals, O., Lebovka, N., & Vorobiev, E. (2016). Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science & Emerging Technologies, 35, 52–57.

    Google Scholar 

  • Prakash, S., Jha, S. K., & Datta, N. (2004). Performance evaluation of blanched carrots dried by three different driers. Journal of Food Engineering, 62(3), 305–313.

    Google Scholar 

  • Rapusas, R. S., & Driscoll, R. H. (1995). The thin-layer drying characterstics of white onion slices. Drying Technology, 13(8–9), 1905–1931.

    CAS  Google Scholar 

  • Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172–1179.

    CAS  PubMed  Google Scholar 

  • Regier, M., Mayer-Miebach, E., Behsnilian, D., Neff, E., & Schuchmann, H. P. (2005). Influences of drying and storage of lycopene-rich carrots on the carotenoid content. Drying Technology, 23(4), 989–998.

    CAS  Google Scholar 

  • Rodrigo, D., Van Loey, A., & Hendrickx, M. (2007). Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. Journal of Food Engineering, 79(2), 553–560.

    Google Scholar 

  • Rzkaca, M., & Witrowa-Rajchert, D. (2007). Influence of drying technique on optical properties of dried apple slices. Acta Agrophysica, 10, 445–454.

    Google Scholar 

  • Sabarez, H. T., & Price, W. E. (1999). A diffusion model for prune dehydration. Journal of Food Engineering, 42(3), 167–172.

    Google Scholar 

  • Sacilik, K., & Unal, G. (2005). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 92(2), 207–215.

    Google Scholar 

  • Salazar, N. A., Alvarez, C., & Orrego, C. E. (2018). Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technology, 36(2), 192–204.

    CAS  Google Scholar 

  • Saxena, A., Maity, T., Raju, P. S., & Bawa, A. S. (2012). Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food and Bioprocess Technology, 5(2), 672–679.

    CAS  Google Scholar 

  • Song, J., Wang, X., Li, D., Meng, L., & Liu, C. (2017). Degradation of carotenoids in pumpkin (Cucurbita maxima L.) slices as influenced by microwave vacuum drying. International Journal of Food Properties, 20(7), 1479–1487.

    CAS  Google Scholar 

  • Suvarnakuta, P., Devahastin, S., & Mujumdar, A. S. (2005). Drying kinetics and $β$-carotene degradation in carrot undergoing different drying processes. Journal of Food Science, 70(8), s520–s526.

    CAS  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—a review. Biosystems Engineering, 98(1), 1–16.

    Google Scholar 

  • Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of ASAE, 28(1), 296–301.

    Google Scholar 

  • Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49(2), 687–693.

    CAS  Google Scholar 

  • Wiktor, A., Nowacka, M., Dadan, M., Rybak, K., Lojkowski, W., Chudoba, T., & Witrowa-Rajchert, D. (2016). The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology, 34(11), 1286–1296.

    Google Scholar 

  • Xu, W., Zhu, G., Song, C., Hu, S., & Li, Z. (2018). Optimization of microwave vacuum drying and pretreatment methods for Polygonum cuspidatum. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/4967356

    Google Scholar 

Download references

Funding

This work was supported by the China Scholarship Council and by the Université de Technologie de Compiègne, France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Liu or Nabil Grimi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Pirozzi, A., Ferrari, G. et al. Effects of Pulsed Electric Fields on Vacuum Drying and Quality Characteristics of Dried Carrot. Food Bioprocess Technol 13, 45–52 (2020). https://doi.org/10.1007/s11947-019-02364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02364-1

Keywords

Navigation