Skip to main content

Advertisement

Log in

Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

The orphan nuclear receptor 4A2 (NR4A2) has been extensively characterized in subcellular regions of the brain and is necessary for the function of dopaminergic neurons. The NR4A2 ligand, 1,1-bis (31-indoly1)-1-(p-chlorophenyl)methane (DIM-C-pPhCl) inhibits markers of neuroinflammation and degeneration in mouse models and in this study we investigated expression and function of NR4A2 in glioblastoma (GBM).

Methods

Established and patient-derived cell lines were used as models and the expression and functions of NR4A2 were determined by western blots and NR4A2 gene silencing by antisense oligonucleotides respectively. Effects of NR4A2 knockdown and DIM-C-pPhCl on cell growth, induction of apoptosis (Annexin V Staining) and migration/invasion (Boyden chamber and spheroid invasion assay) and transactivation of NR4A2-regulated reporter genes were determined. Tumor growth was investigated in athymic nude mice bearing U87-MG cells as xenografts.

Results

NR4A2 knockdown and DIM-C-pPhCl inhibited GBM cell and tumor growth, induced apoptosis and inhibited migration and invasion of GBM cells. DIM-C-pPhCl and related analogs also inhibited NR4A2-regulated transactivation (luciferase activity) confirming that DIM-C-pPhCl acts as an NR4A2 antagonist and blocks NR4A2-dependent pro-oncogenic responses in GBM.

Conclusion

We demonstrate for the first time that NR4A2 is pro-oncogenic in GBM and thus a potential druggable target for patients with tumors expressing this receptor. Moreover, our bis-indole-derived NR4A2 antagonists represent a novel class of anti-cancer agents with potential future clinical applications for treating GBM.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wansa KD et al (2002) The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem 277(36):33001–33011. https://doi.org/10.1074/jbc.M203572200

    Article  CAS  PubMed  Google Scholar 

  2. Giguere V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 20(5):689–725. https://doi.org/10.1210/Er.20.5.689

    Article  CAS  PubMed  Google Scholar 

  3. Wansa KD et al (2003) The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 278(27):24776–24790. https://doi.org/10.1074/jbc.M300088200

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z et al (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560. https://doi.org/10.1038/nature01645

    Article  CAS  PubMed  Google Scholar 

  5. Maxwell MA, Muscat GE (2006) The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nuclear Recept Signal 4:e002. https://doi.org/10.1621/nrs.04002

    Article  CAS  Google Scholar 

  6. Pearen MA, Muscat GE (2010) Minireview: nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 24(10):1891–1903. https://doi.org/10.1210/me.2010-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullican SE et al (2007) Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 13(6):730–735. https://doi.org/10.1038/nm1579

    Article  CAS  PubMed  Google Scholar 

  8. Lee SO et al (2014) The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells. Mol Cancer Res 12(4):527–538. https://doi.org/10.1158/1541-7786.MCR-13-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee SO et al (2012) The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene 31(27):3265–3276. https://doi.org/10.1038/onc.2011.504

    Article  CAS  PubMed  Google Scholar 

  10. Wu H et al (2011) Regulation of Nur77 expression by beta-catenin and its mitogenic effect in colon cancer cells. FASEB J 25(1):192–205. https://doi.org/10.1096/fj.10-166462

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou F et al (2014) Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-beta signalling. Nat Commun 5:3388. https://doi.org/10.1038/ncomms4388

    Article  CAS  PubMed  Google Scholar 

  12. Safe S et al (2016) Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol 157:48–60. https://doi.org/10.1016/j.jsbmb.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  13. Hedrick E, Lee SO, Doddapaneni R, Singh M, Safe S (2015) Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr Relat Cancer 22(5):831–840. https://doi.org/10.1530/ERC-15-0063

    Article  CAS  Google Scholar 

  14. Hedrick E, Safe S (2017) Transforming growth factor beta/NR4A1-inducible breast cancer cell migration and epithelial-to-mesenchymal transition is p38alpha (mitogen-activated protein kinase 14) dependent. Mol Cell Biol 37(18):1. https://doi.org/10.1128/mcb.00306-17

    Article  CAS  Google Scholar 

  15. Ke N et al (2004) Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res 64(22):8208–8212. https://doi.org/10.1158/0008-5472.CAN-04-2134

    Article  CAS  PubMed  Google Scholar 

  16. Sun L et al (2016) Notch signaling activation in cervical cancer cells induces cell growth arrest with the involvement of the nuclear receptor NR4A2. J Cancer 7(11):1388–1395. https://doi.org/10.7150/jca.15274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Komiya T et al (2010) Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 29(11):1672–1680. https://doi.org/10.1038/onc.2009.453

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Tai HH (2009) Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 30(9):1606–1613. https://doi.org/10.1093/carcin/bgp161

    Article  CAS  PubMed  Google Scholar 

  19. Wang J et al (2013) Orphan nuclear receptor nurr1 as a potential novel marker for progression in human prostate cancer. Asian Pac J Cancer Prev 14(3):2023–2028

    Article  PubMed  Google Scholar 

  20. Llopis S et al (2013) Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer. BMC Cancer 13:139. https://doi.org/10.1186/1471-2407-13-139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han Y et al (2013) Expression of orphan nuclear receptor NR4A2 in gastric cancer cells confers chemoresistance and predicts an unfavorable postoperative survival of gastric cancer patients with chemotherapy. Cancer 119(19):3436–3445. https://doi.org/10.1002/cncr.28228

    Article  CAS  PubMed  Google Scholar 

  22. Zhu B et al (2017) Activated Notch signaling augments cell growth in hepatocellular carcinoma via up-regulating the nuclear receptor NR4A2. Oncotarget 8(14):23289–23302. https://doi.org/10.18632/oncotarget.15576

    Article  PubMed  PubMed Central  Google Scholar 

  23. Inamoto T et al (2008) 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Mol Cancer Ther 7(12):3825–3833. https://doi.org/10.1158/1535-7163.MCT-08-0730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han Y et al (2013) Nuclear orphan receptor NR4A2 confers chemoresistance and predicts unfavorable prognosis of colorectal carcinoma patients who received postoperative chemotherapy. Eur J Cancer 49(16):3420–3430. https://doi.org/10.1016/j.ejca.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  25. Han YF, Cao GW (2012) Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers. World J Gastroenterol 18(47):6865–6873. https://doi.org/10.3748/wjg.v18.i47.6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beard JA et al (2015) The interplay of NR4A receptors and the oncogene-tumor suppressor networks in cancer. Cell Signal 27(2):257–266. https://doi.org/10.1016/j.cellsig.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  27. Zhao BX et al (2006) p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J 25(24):5703–5715. https://doi.org/10.1038/sj.emboj.7601435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang T et al (2009) NGFI-B nuclear orphan receptor Nurr1 interacts with p53 and suppresses its transcriptional activity. Mol Cancer Res 7(8):1408–1415. https://doi.org/10.1158/1541-7786.MCR-08-0533

    Article  CAS  PubMed  Google Scholar 

  29. Beard JA et al (2016) The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network. Sci Rep 6:25108. https://doi.org/10.1038/srep25108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zetterstrom RH et al (1996) Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res 41(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  31. Zetterstrom RH et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    Article  CAS  PubMed  Google Scholar 

  32. Saucedo-Cardenas O et al (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95(7):4013–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadkhodaei B et al (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50):15923–15932. https://doi.org/10.1523/JNEUROSCI.3910-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kadkhodaei B et al (2013) Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci USA 110(6):2360–2365. https://doi.org/10.1073/pnas.1221077110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Decressac M et al (2012) alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4(163):163ra156. https://doi.org/10.1126/scitranslmed.3004676

    Article  CAS  PubMed  Google Scholar 

  36. Decressac M et al (2013) NURR1 in Parkinson disease–from pathogenesis to therapeutic potential. Nat Rev Neurol 9(11):629–636. https://doi.org/10.1038/nrneurol.2013.209

    Article  CAS  PubMed  Google Scholar 

  37. Volakakis N et al (2015) Nurr1 and retinoid X receptor ligands stimulate ret signaling in dopamine neurons and can alleviate alpha-synuclein disrupted gene expression. J Neurosci 35(42):14370–14385. https://doi.org/10.1523/JNEUROSCI.1155-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Miranda BR et al (2013) Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson’s disease. J Pharmacol Exp Ther 345(1):125–138. https://doi.org/10.1124/jpet.112.201558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Miranda BR et al (2015) Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson’s disease. Toxicol Sci 143(2):360–373. https://doi.org/10.1093/toxsci/kfu236

    Article  CAS  PubMed  Google Scholar 

  40. De Miranda BR et al (2015) The Nurr1 activator 1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane blocks inflammatory gene expression in BV-2 microglial cells by inhibiting nuclear factor kB. Mol Pharmacol 87(6):1021–1034. https://doi.org/10.1124/mol.114.095398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hammond SL et al (2015) A novel synthetic activator of Nurr1 induces dopaminergic gene expression and protects against 6-hydroxydopamine neurotoxicity in vitro. Neurosci Lett 607:83–89. https://doi.org/10.1016/j.neulet.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hammond SL et al (2018) The Nurr1 ligand,1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane, modulates glial reactivity and is neuroprotective in MPTP-induced parkinsonism. J Pharmacol Exp Ther. https://doi.org/10.1124/jpet.117.246389

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li X et al (2012) Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 83(10):1445–1455. https://doi.org/10.1016/j.bcp.2012.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang LF et al (2011) Overexpression of the orphan receptor Nur77 and its translocation induced by PCH4 may inhibit malignant glioma cell growth and induce cell apoptosis. J Surg Oncol 103(5):442–450. https://doi.org/10.1002/jso.21809

    Article  CAS  PubMed  Google Scholar 

  45. Cancer Genome Atlas Research N et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498. https://doi.org/10.1056/nejmoa1402121

    Article  Google Scholar 

  46. Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siegel RL et al (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  48. Ostrom QT et al (2015) Epidemiology of gliomas. In: Raizer J, Parsa A (eds) Current understanding and treatment of gliomas, 1st edn. Springer, Switzerland, pp 1–14

    Google Scholar 

  49. Pearson JRD, Regad T (2017) Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2:17040. https://doi.org/10.1038/sigtrans.2017.40

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alexander BM, Cloughesy TF (2017) Adult Glioblastoma. J Clin Oncol 35(21):2402–2409. https://doi.org/10.1200/JCO.2017.73.0119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health [P30-ES023512 (SS), R01-ES025713 (SS), R01-CA202697 (SS), and T32-ES026568 (KK)], Texas A&M AgriLife Research (SS), the Sid Kyle Chair Endowment (SS), and the Karmanos Cancer Institute (SM).

Funding

This research received federal grant and University funding as indicated under funding.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: S.K.M., S.M., S.H.S. Analysis and interpretation of data: All authors. Experimentation: K.K., S.K.M. Generation of Data: K.K., X.L., U.J., K.M., M.Z., S.K.M. Drafting of manuscript: S.K.M., S.M., S.H.S. Final approval of article: All authors.

Corresponding author

Correspondence to Stephen Safe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, K., Li, X., Jin, UH. et al. Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas. J Neurooncol 146, 25–39 (2020). https://doi.org/10.1007/s11060-019-03349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03349-y

Keywords

Navigation