Skip to main content
Log in

Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of a facile strategy to construct stable hierarchal porous heterogeneous photocatalysts remains a great challenge for efficient CO2 reduction. Additionally, hole-trapping sacrificial agents (e.g., triethanolamine, triethylamine, and methanol) are mostly necessary, which produce useless chemicals, and thus cause costs/environmental concerns. Therefore, utilizing oxidation ability of holes to develop an alternative photooxidation reaction to produce value-added chemicals, especially coupled with CO2 photoreduction, is highly desirable. Here, an in situ partial phosphating method of In2O3 is reported for synthesizing InP–In2O3 p-n junction. A highly selective photooxidation of tetrahydroisoquinoline (THIQ) into value-added dihydroisoquinoline (DHIQ) is to replace the hole driven oxidation of typical sacrificial agents. Meanwhile, the photoelectrons of InP–In2O3 p-n junction can induce the efficient photoreduction of CO2 to CO with high selectivity and stability. The evolution rates of DHIQ and CO are 2 and 3.8 times higher than those of the corresponding In2O3 n-type precursor, respectively. In situ irradiated X-ray photoelectron spectroscopy and electron spin resonance are utilized to confirm that the direct Z-scheme mechanism of InP–In2O3 p-n junction accelerate the efficient separation of photocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    CAS  PubMed  Google Scholar 

  2. Gao C, Chen S, Wang Y, Wang J, Zheng X, Zhu J, Song L, Zhang W, Xiong Y. Adv Mater, 2018, 30: 1704624

    Google Scholar 

  3. Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J. Angew Chem Int Ed, 2018, 57: 10954–10958

    CAS  Google Scholar 

  4. Zeng G, Qiu J, Hou B, Shi H, Lin Y, Hettick M, Javey A, Cronin SB. Chem Eur J, 2015, 21: 13502–13507

    CAS  PubMed  Google Scholar 

  5. Bushuyev OS, De Luna P, Dinh CT, Tao L, Saur G, van de Lagemaat J, Kelley SO, Sargent EH. Joule, 2018, 2: 825–832

    CAS  Google Scholar 

  6. Cammarota RC, Vollmer MV, Xie J, Ye J, Linehan JC, Burgess SA, Appel AM, Gagliardi L, Lu CC. J Am Chem Soc, 2017, 139: 14244–14250

    CAS  PubMed  Google Scholar 

  7. Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H. J Am Chem Soc, 2014, 136: 15969–15976

    PubMed  Google Scholar 

  8. Wang S, Guan BY, Lu Y, Lou XW. J Am Chem Soc, 2017, 139: 17305–17308

    CAS  PubMed  Google Scholar 

  9. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290

    PubMed  PubMed Central  Google Scholar 

  10. Kang Q, Wang T, Li P, Liu L, Chang K, Li M, Ye J. Angew Chem Int Ed, 2015, 54: 841–845

    CAS  Google Scholar 

  11. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew Chem Int Ed, 2012, 51: 8008–8011

    CAS  Google Scholar 

  12. Oshima T, Ichibha T, Qin KS, Muraoka K, Vequizo JJM, Hibino K, Kuriki R, Yamashita S, Hongo K, Uchiyama T, Fujii K, Lu D, Maezono R, Yamakata A, Kato H, Kimoto K, Yashima M, Uchimoto Y, Kakihana M, Ishitani O, Kageyama H, Maeda K. Angew Chem Int Ed, 2018, 57: 8154–8158

    CAS  Google Scholar 

  13. Cao S, Shen B, Tong T, Fu J, Yu J. Adv Funct Mater, 2018, 28: 1800136

    Google Scholar 

  14. Yu L, Li G, Zhang X, Ba X, Shi G, Li Y, Wong PK, Yu JC, Yu Y. ACS Catal, 2016, 6: 6444–6454

    CAS  Google Scholar 

  15. Jia J, O’Brien PG, He L, Qiao Q, Fei T, Reyes LM, Burrow TE, Dong Y, Liao K, Varela M, Pennycook SJ, Hmadeh M, Helmy AS, Kherani NP, Perovic DD, Ozin GA. Adv Sci, 2016, 3: 1600189

    Google Scholar 

  16. Pan YX, You Y, Xin S, Li Y, Fu G, Cui Z, Men YL, Cao FF, Yu SH, Goodenough JB. J Am Chem Soc, 2017, 139: 4123–4129

    CAS  PubMed  Google Scholar 

  17. Shi H, Chen G, Zhang C, Zou Z. ACS Catal, 2014, 4: 3637–3643

    CAS  Google Scholar 

  18. Zeng G, Qiu J, Li Z, Pavaskar P, Cronin SB. ACS Catal, 2014, 4: 3512–3516

    CAS  Google Scholar 

  19. Li F, Chen L, Xue M, Williams T, Zhang Y, MacFarlane DR, Zhang J. Nano Energy, 2017, 31: 270–277

    CAS  Google Scholar 

  20. Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J Am Chem Soc, 2017, 139: 6538–6541

    CAS  PubMed  Google Scholar 

  21. Nakada A, Nakashima T, Sekizawa K, Maeda K, Ishitani O. Chem Sci, 2016, 7: 4364–4371

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuehnel MF, Orchard KL, Dalle KE, Reisner E. J Am Chem Soc, 2017, 139: 7217–7223

    CAS  PubMed  Google Scholar 

  23. Ran J, Jaroniec M, Qiao SZ. Adv Mater, 2018, 30: 1704649

    Google Scholar 

  24. Wei N, Cui H, Song Q, Zhang L, Song X, Wang K, Zhang Y, Li J, Wen J, Tian J. Appl Catal B-Environ, 2016, 198: 83–90

    CAS  Google Scholar 

  25. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z. Adv Energy Mater, 2016, 6: 1600464

    Google Scholar 

  26. Hong X, Kim J, Shi SF, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Nat Nanotech, 2014, 9: 682–686

    CAS  Google Scholar 

  27. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Chem Soc Rev, 2014, 43: 5234–5244

    CAS  PubMed  Google Scholar 

  28. Zhou P, Yu J, Jaroniec M. Adv Mater, 2014, 26: 4920–4935

    CAS  PubMed  Google Scholar 

  29. Li H, Tu W, Zhou Y, Zou Z. Adv Sci, 2016, 3: 1500389

    Google Scholar 

  30. Roske CW, Popczun EJ, Seger B, Read CG, Pedersen T, Hansen O, Vesborg PCK, Brunschwig BS, Schaak RE, Chorkendorff I, Gray HB, Lewis NS. J Phys Chem Lett, 2015, 6: 1679–1683

    CAS  PubMed  Google Scholar 

  31. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Angew Chem Int Ed, 2013, 52: 7372–7408

    CAS  Google Scholar 

  32. Tian J, Zhao Z, Kumar A, Boughton RI, Liu H. Chem Soc Rev, 2014, 43: 6920–6937

    CAS  PubMed  Google Scholar 

  33. Sabaté J, Cerveramarch S, Simarro R, Gimenez J. Int J Hydrogen Energy, 1990, 15: 115–124

    Google Scholar 

  34. Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570

    CAS  PubMed  Google Scholar 

  35. Zheng M, Shi J, Yuan T, Wang X. Angew Chem Int Ed, 2018, 57: 5487–5491

    CAS  Google Scholar 

  36. Zhao W, Liu C, Cao L, Yin X, Xu H, Zhang B. RSC Adv, 2013, 3: 22944–22948

    CAS  Google Scholar 

  37. Kamat PV, Jin S. ACS Energy Lett, 2018, 3: 622–623

    CAS  Google Scholar 

  38. Han G, Jin YH, Burgess RA, Dickenson NE, Cao XM, Sun Y. J Am Chem Soc, 2017, 139: 15584–15587

    CAS  PubMed  Google Scholar 

  39. He KH, Zhang WD, Yang MY, Tang KL, Qu M, Ding YS, Li Y. Org Lett, 2016, 18: 2840–2843

    CAS  PubMed  Google Scholar 

  40. Huang C, Huang Y, Liu C, Yu Y, Zhang B. Angew Chem Int Ed, 2019, 58: 12014–12017

    CAS  Google Scholar 

  41. Kim DS, Park JW, Jun CH. Adv Synth Catal, 2013, 355: 2667–2679

    CAS  Google Scholar 

  42. Wu J, Talwar D, Johnston S, Yan M, Xiao J. Angew Chem Int Ed, 2013, 52: 6983–6987

    CAS  Google Scholar 

  43. Niu YN, Yan ZY, Gao GL, Wang HL, Shu XZ, Ji KG, Liang YM. J Org Chem, 2009, 74: 2893–2896

    CAS  PubMed  Google Scholar 

  44. Wu R, Xu Y, Xu R, Huang Y, Zhang B. J Mater Chem A, 2015, 3: 1930–1934

    CAS  Google Scholar 

  45. Zhang C, Huang Y, Yu Y, Zhang J, Zhuo S, Zhang B. Chem Sci, 2017, 8: 2769–2775

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang LW, Alivisatos AP. Science, 2007, 317: 355–358

    CAS  PubMed  Google Scholar 

  47. Yu Y, Huang Y, Yu Y, Shi Y, Zhang B. Nano Energy, 2018, 43: 236–243

    CAS  Google Scholar 

  48. Liu G, Karuturi SK, Chen H, Spiccia L, Tan HH, Jagadish C, Wang D, Simonov AN, Tricoli A. Nano Energy, 2018, 53: 745–752

    CAS  Google Scholar 

  49. Liu Y, Li J, Li W, Yang Y, Li Y, Chen Q. J Phys Chem C, 2015, 119: 14834–14842

    CAS  Google Scholar 

  50. Low J, Dai B, Tong T, Jiang C, Yu J. Adv Mater, 2019, 31: 1802981

    Google Scholar 

  51. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. Adv Mater, 2018, 30: 1706108

    Google Scholar 

  52. Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L. J Am Chem Soc, 2017, 139: 3513–3521

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21422104), and the Natural Science Foundation of Tianjin City (17JCJQJC44700, 16JCZDJC30600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9620_MOESM1_ESM.pdf

Integrating Photocatalytic Reduction of CO2 with Selective Oxidation of Tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n Junction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Huang, Y., Liu, D. et al. Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction. Sci. China Chem. 63, 28–34 (2020). https://doi.org/10.1007/s11426-019-9620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9620-1

Keywords

Navigation