Skip to main content

Advertisement

Log in

Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Methylparaben is most frequently used as an antimicrobial preservative in pharmaceuticals and foods. Methylparaben has been subjected to toxicological studies owing to the increasing concern regarding its possible impact on the environment and human health. However, the cytotoxicity and underlying mechanisms of methylparaben exposure in human lung cells have not been explored. Here, we investigated the effect of methylparaben on cell cycle, apoptotic pathways, and changes in the transcriptome profiles in human lung cells. Our results demonstrate that treatment with methylparaben causes inhibition of cell growth. In addition, methylparaben induced S- and G2/M-phase arrest as a result of enhanced apoptosis. Transcriptome analysis using RNA-seq revealed that mRNA expression of ER stress- and protein misfolding-related gene sets was upregulated in methylparaben-treated group. RNA splicing- and maturation-related gene sets were significantly down-regulated by methylparaben treatment. Interestingly, RNA-seq analysis at the transcript level revealed that alternative splicing events, especially retained intron, were markedly changed by a low dose of methylparaben treatment. Altogether, these data show that methylparaben induces an early phase of apoptosis through cell cycle arrest and downregulation of mRNA maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen F (2008) Final amended report on the safety assessment of metylparaben, ethylparaben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, and Benzylparaben as used in cosmetic products. Int J Toxicol 27(Suppl. 4):1–82

    Google Scholar 

  • Bledzka D, Gromadzinska J, Wasowicz W (2014) Parabens. From environmental studies to human health. Environ Int 67:27–42

    CAS  PubMed  Google Scholar 

  • Boberg J, Taxvig C, Christiansen S, Hass U (2010) Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol 30(2):301–312

    CAS  PubMed  Google Scholar 

  • Bottomly D, Walter NA, Hunter JE et al (2011) Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS ONE 6(3):e17820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byford JRSL, Drew MG, Pope GS, Sauer MJ, Darbre PD (2002) Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 80(1):49–60

    CAS  PubMed  Google Scholar 

  • Calafat A, Ye X, Wong L, Bishop A, Needham L (2010) Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect 118(5):679–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canosa P, Perez-Palacios D, Garrido-Lopez A et al (2007a) Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J Chromatogr A 1161(1–2):105–112

    CAS  PubMed  Google Scholar 

  • Canosa PRI, Rubí E, Cela R (2007b) Determination of Parabens and Triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal Chem 79(4):1675–1681

    CAS  PubMed  Google Scholar 

  • Cidado JWH, Rosen DM, Cimino-Mathews A, Garay JP, Fessler AG, Rasheed ZA, Hicks J, Cochran RL, Croessmann S, Zabransky DJ, Mohseni M, Beaver JA, Chu D, Cravero K, Christenson ES, Medford A, Mattox A, De Marzo AM, Argani P, Chawla A, Hurley PJ, Lauring J, Park BH (2016) Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget 7(5):6281–6293

    PubMed  PubMed Central  Google Scholar 

  • Dagher Z, Borgie M, Magdalou J, Chahine R, Greige-Gerges H (2012) p-Hydroxybenzoate esters metabolism in MCF7 breast cancer cells. Food Chem Toxicol 50(11):4109–4114

    CAS  PubMed  Google Scholar 

  • Darbre P, Harvey P (2008) Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol 28(5):561–578

    CAS  PubMed  Google Scholar 

  • Darbre P, Aljarrah A, Miller W, Coldham N, Sauer M, Pope G (2004) Concentrations of parabens in human breast tumours. J Appl Toxicol 24(1):5–13

    CAS  PubMed  Google Scholar 

  • Dubey D, Chopra D, Singh J et al (2017) Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells. Food Chem Toxicol 108(Pt A):171–185

    CAS  PubMed  Google Scholar 

  • Fu X, Fu N, Guo S et al (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genom 10:161

    Google Scholar 

  • Handa O, Kokura S, Adachi S et al (2006) Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology 227(1–2):62–72

    CAS  PubMed  Google Scholar 

  • Hoberman AM, Schreur DK, Leazer T et al (2008) Lack of effect of butylparaben and methylparaben on the reproductive system in male rats. Birth Defects Res B Dev Reprod Toxicol 83(2):123–133

    CAS  PubMed  Google Scholar 

  • Hu P, Kennedy RC, Chen X et al (2016) Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environ Sci Pollut Res Int 23(21):21957–21968

    CAS  PubMed  Google Scholar 

  • Jackson E (1992) Moisturizers of Today. J Toxicol Cutan Ocul Toxicol 11(3):173–184

    CAS  Google Scholar 

  • Kwon D, Chung H-K, Shin W-S et al (2018) Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Mol Cell Toxicol 14(1):105–112

    CAS  Google Scholar 

  • Li J, Hou R, Niu X et al (2016) Comparison of microarray and RNA-Seq analysis of mRNA expression in dermal mesenchymal stem cells. Biotechnol Lett 38(1):33–41

    CAS  PubMed  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa YMP (1998) Mechanism of p-Hydroxybenzoate Ester-induced mitochondrial dysfunction and cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 55(11):1907–1914

    CAS  PubMed  Google Scholar 

  • Nakagawa YMG (1999) Role of Mitochondrial Membrane Permeability transition in p-hydroxybenzoate ester induced cytotoxicity in rat hepatocytes. Biochem Pharmacol 58(5):811–816

    CAS  PubMed  Google Scholar 

  • Oijen MG, Medema RH, Slootweg PJ, Rijksen G (1998) Positivity of the proliferation marker Ki-67 in noncycling cells. Am J CIin Pathol 110(1):24–31

    Google Scholar 

  • Oishi S (2001) Effects of butylparaben on the male reproductive system in rats. Toxicol Indl Health 1:31–39

    Google Scholar 

  • Oishi S (2002a) Effects of propyl paraben on the male reproductive system. Food Chem Toxicol 40(12):1087–1813

    Google Scholar 

  • Oishi S (2002b) Effects of butyl paraben on the male reproductive system in mice. Arch Toxicol 76(7):423–429

    CAS  PubMed  Google Scholar 

  • Oishi S (2004) Lack of spermatotoxic effects of methyl and ethyl esters of p-hydroxybenzoic acid in rats. Food Chem Toxicol 42(11):1845–1849

    CAS  PubMed  Google Scholar 

  • Ramaswamy B, Kim J, Isobe T et al (2011) Determination of preservative and antimicrobial compounds in fish from Manila Bay, Philippines using ultra high performance liquid chromatography tandem mass spectrometry, and assessment of human dietary exposure. J Hazard Mater 192(3):1739–1745

    CAS  PubMed  Google Scholar 

  • Routledge EJPJ, Odum J, Ashby J, Sumpter JP (1992) Some Alkyl Hydroxy Benzoate Preservatives Are Estrogenic. Toxicol Appl Pharmacol 36(1):131–149

    Google Scholar 

  • Rudel RACD, Spengler JD, Korn LR, Brody JG (2003) Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 37(20):4543–4553

    CAS  PubMed  Google Scholar 

  • Shah KHVR (2011) Butyl p-hydroxybenzoic acid induces oxidative stress in mice liver-an in vivo study. Acta Pol Pharm 68(6):875–879

    CAS  PubMed  Google Scholar 

  • Sobecki M, Mrouj K, Camasses A et al (2016) The cell proliferation antigen Ki-67 organises heterochromatin. Elife 5:e13722

    PubMed  PubMed Central  Google Scholar 

  • Sobecki M, Mrouj K, Colinge J et al (2017) Cell-Cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res 77(10):2722–2734

    CAS  PubMed  Google Scholar 

  • Soni M, Carabin I, Burdock G (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43(7):985–1015

    CAS  PubMed  Google Scholar 

  • Sun X, Kaufman PD (2018) Ki-67: more than a proliferation marker. Chromosoma 127(2):175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen K (2003) Cell cycle and apoptosis. Cell Prolif 36:165–175

    CAS  PubMed  Google Scholar 

  • Vermeulen KVBD, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149

    CAS  PubMed  Google Scholar 

  • Wang Y, Ryu HS, Jang JJ (2018) Nicotinamide suppresses cell growth by G1-phase arrest and induces apoptosis in intrahepatic cholangiocarcinoma. Mol Cell Toxicol 14(1):43–51

    Google Scholar 

  • Wrobel AM, Gregoraszczuk EL (2014) Differential effect of methyl-, butyl- and propylparaben and 17beta-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells. J Appl Toxicol 34(9):1041–1050

    CAS  PubMed  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9(1):e78644

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Korea Environment Industry & Technology Institute (KEITI) through The Environmental Health Action Program funded by Korea Ministry of Environment (MOE), Grant/Award Number: 2017001360007; National Research Foundation of Korea (NRF), Ministry of Science, ICT & Future Planning, Grant/Award Number: NRF2016R1A4A1008035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Woong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1392 kb)

Supplementary file2 (XLSX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.J., Kim, CH., Seo, YJ. et al. Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol 94, 127–140 (2020). https://doi.org/10.1007/s00204-019-02629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02629-w

Keywords

Navigation