Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The chemistry and applications of RNA 2′-OH acylation

Abstract

RNA is a versatile biomolecule with a broad range of biological functions that go far beyond its initially described role as a simple information carrier. The development of chemical methods to control, manipulate and modify RNA has the potential to yield new insights into its many functions and properties. Traditionally, most of these methods involved the chemical modification of RNA structure using solid-state synthesis or enzymatic transformations. However, over the past 15 years, the direct functionalization of RNA by selective acylation of the 2′-hydroxyl (2′-OH) group has emerged as a powerful alternative that enables the simple modification of both synthetic and transcribed RNAs. In this Review, we discuss the chemical properties and design of effective reagents for RNA 2′-OH acylation, highlighting the unique problem of 2′-OH reactivity in the presence of water. We elaborate on how RNA 2′-OH acylation is being exploited to develop selective chemical probes that enable interrogation of RNA structure and function, and describe new developments and applications in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective acylation of 2′-OH groups in RNA with activated carbonyls.
Fig. 2: Determination of RNA structure using SHAPE.
Fig. 3: Overview of functional groups introduced into RNA using acylation chemistry.
Fig. 4: Functionalization and labelling of (oligo)nucleotides using acylation chemistry.
Fig. 5: Acylation protects RNA from degradation.
Fig. 6: Charging tRNA with unnatural amino acids using acylation chemistry.
Fig. 7: Reversible acylation for controlling RNA activity.
Fig. 8: Acylation assists prebiotic RNA synthesis and might explain drug effects.

Similar content being viewed by others

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS  PubMed  Google Scholar 

  2. Lieberman, J. Tapping the RNA world for therapeutics. Nat. Struct. Mol. Biol. 25, 357–364 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin, C. & Yang, L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 28, 287–301 (2018).

    CAS  PubMed  Google Scholar 

  4. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

    CAS  PubMed  Google Scholar 

  5. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    CAS  PubMed  Google Scholar 

  7. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000).

    CAS  PubMed  Google Scholar 

  10. Beringer, M. & Rodnina, M. V. The ribosomal peptidyl transferase. Mol. Cell 26, 311–321 (2007).

    CAS  PubMed  Google Scholar 

  11. Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

    CAS  PubMed  Google Scholar 

  12. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    CAS  PubMed  Google Scholar 

  15. Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  16. Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 17, 756–770 (2016).

    CAS  PubMed  Google Scholar 

  17. Chen, L.-L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761–772 (2016).

    CAS  PubMed  Google Scholar 

  18. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  19. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  21. Sullenger, B. A. & Nair, S. From the RNA world to the clinic. Science 352, 1417–1420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kapranov, P. & St. Laurent, G. Dark matter RNA: existence, function, and controversy. Front. Genet. 3, 60 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Riddihough, G. In the forests of RNA dark matter. Science 309, 1507 (2005).

    CAS  Google Scholar 

  24. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    CAS  PubMed  Google Scholar 

  25. Lu, Z. & Chang, H. Y. Decoding the RNA structurome. Curr. Opin. Struct. Biol. 36, 142–148 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98 (2011).

    CAS  PubMed  Google Scholar 

  27. Peer, E., Rechavi, G. & Dominissini, D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr. Opin. Chem. Biol. 41, 93–98 (2017).

    CAS  PubMed  Google Scholar 

  28. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Weeks, K. M. & Mauger, D. M. Exploring RNA structural codes with shape chemistry. Acc. Chem. Res. 44, 1280–1291 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA–protein complexes. Nat. Protoc. 2, 2608–2623 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hulscher, R. M. et al. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods 103, 49–56 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 683–686 (2011).

    Google Scholar 

  34. Shin, D., Sinkeldam, R. W. & Tor, Y. Emissive RNA alphabet. J. Am. Chem. Soc. 133, 14912–14915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawai, R. et al. Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J. Am. Chem. Soc. 127, 17286–17295 (2005).

    CAS  PubMed  Google Scholar 

  36. Anhäuser, L. & Rentmeister, A. Enzyme-mediated tagging of RNA. Curr. Opin. Biotechnol. 48, 69–76 (2017).

    PubMed  Google Scholar 

  37. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    CAS  PubMed  Google Scholar 

  38. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Shabanpoor, F. et al. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res. 43, 29–39 (2015).

    CAS  PubMed  Google Scholar 

  40. Ankenbruck, N., Courtney, T., Naro, Y. & Deiters, A. Optochemical control of biological processes in cells and animals. Angew. Chem. Int. Ed. 57, 2768–2798 (2018).

    CAS  Google Scholar 

  41. Lubbe, A. S., Szymanski, W. & Feringa, B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 46, 1052–1079 (2017).

    CAS  PubMed  Google Scholar 

  42. Xia, Y., Zhang, R., Wang, Z., Tian, J. & Chen, X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem. Soc. Rev. 46, 2824–2843 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaspar, I., Wippich, F. & Ephrussi, A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA 23, 1582–1591 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    CAS  PubMed  Google Scholar 

  45. Paredes, E., Evans, M. & Das, S. R. RNA labeling, conjugation and ligation. Methods 54, 251–259 (2011).

    CAS  PubMed  Google Scholar 

  46. Cusack, S. Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol. 7, 881–889 (1997).

    CAS  PubMed  Google Scholar 

  47. Ayadi, L., Galvanin, A., Pichot, F., Marchand, V. & Motorin, Y. RNA ribose methylation (2′-O-methylation): Occurrence, biosynthesis and biological functions. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 253–269 (2019).

    CAS  PubMed  Google Scholar 

  48. Stuart, A. & Khorana, H. G. The selective acetylation of terminal hydroxyl groups in deoxyribo-oligonucleotides. J. Am. Chem. Soc. 85, 2346–2347 (1963).

    CAS  Google Scholar 

  49. Knorre, D. G., Pustoshilova, N. M., Teplova, N. & Shamovsk, G. G. Production of transfer RNA acetylated at its 2′-hydroxy groups. Biokhimiya 30, 1218–1224 (1965).

    CAS  Google Scholar 

  50. Kochetkov, N. K. & Budovskii, E. I. in Organic Chemistry of Nucleic Acids: Part B 449–476 (Springer, 1972).

  51. Cox, J. R. & Ramsay, O. B. Mechanisms of nucleophilic substitution in phosphate esters. Chem. Rev. 64, 317–352 (1964).

    CAS  Google Scholar 

  52. Velema, W. A., Kietrys, A. M. & Kool, E. T. RNA control by photoreversible acylation. J. Am. Chem. Soc. 140, 3491–3495 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    CAS  PubMed  Google Scholar 

  54. Lin, C. et al. Identification of acylation products in SHAPE chemistry. Bioorg. Med. Chem. Lett. 27, 2506–2509 (2017).

    CAS  PubMed  Google Scholar 

  55. Keith, G. & Ebel, J.-P. Action de l’anhydride acétique sur les acides ribonucléiques de levure en milieu diméthylformamide. Biochim. Biophys. Acta 166, 16–28 (1968).

    CAS  PubMed  Google Scholar 

  56. Meister, E. C., Willeke, M., Angst, W., Togni, A. & Walde, P. Confusing quantitative descriptions of Brønsted–Lowry acid–base equilibria in chemistry textbooks – a critical review and clarifications for chemical educators. Helv. Chim. Acta 97, 1–31 (2014).

    CAS  Google Scholar 

  57. Thaplyal, P. & Bevilacqua, P. C. in Riboswitch Discovery, Structure and Function Vol. 549 (ed. Burke-Aguero, D. H.) 189–219 (Academic, 2014).

  58. Velikyan, I., Acharya, S., Trifonova, A., Földesi, A. & Chattopadhyaya, J. The pKa’s of 2′-hydroxyl group in nucleosides and nucleotides. J. Am. Chem. Soc. 123, 2893–2894 (2001).

    CAS  PubMed  Google Scholar 

  59. Knorre, D. G., Pustoshi, N. M. & Teplova, N. Action of spleen and snake venom phosphodiesterases on transfer-RNA acetylated on the ribose 2′-hydroxyl group. Biokhimiya 31, 666–669 (1966).

    CAS  Google Scholar 

  60. McGinnis, J. L., Dunkle, J. A., Cate, J. H. D. & Weeks, K. M. The mechanisms of RNA shape chemistry. J. Am. Chem. Soc. 134, 6617–6624 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mortimer, S. A. & Weeks, K. M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).

    CAS  PubMed  Google Scholar 

  62. Park, H. S., Kietrys, A. M. & Kool, E. T. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem. Commun. 55, 5135–5138 (2019).

    CAS  Google Scholar 

  63. Kadina, A., Kietrys, A. M. & Kool, E. T. RNA cloaking by reversible acylation. Angew. Chem. Int. Ed. 57, 3059–3063 (2018).

    CAS  Google Scholar 

  64. Fessler, A., Garmon, C., Heavey, T., Fowler, A. & Ogle, C. Water-soluble and UV traceable isatoic anhydride-based reagents for bioconjugation. Org. Biomol. Chem. 15, 9599–9602 (2017).

    CAS  PubMed  Google Scholar 

  65. Fessler, A. B. et al. Water-soluble isatoic anhydrides: a platform for RNA-SHAPE analysis and protein bioconjugation. Bioconjug. Chem. 29, 3196–3202 (2018).

    CAS  PubMed  Google Scholar 

  66. Velema, W. A. & Kool, E. T. Water-soluble leaving group enables hydrophobic functionalization of RNA. Org. Lett. 20, 6587–6590 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nodin, L. et al. RNA SHAPE chemistry with aromatic acylating reagents. Bioorg. Med. Chem. Lett. 25, 566–570 (2015).

    CAS  PubMed  Google Scholar 

  68. Kutchko, K. M. & Laederach, A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. Wiley Interdiscip. RNA 8, e1374 (2017).

    Google Scholar 

  69. Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).

    CAS  PubMed  Google Scholar 

  70. Strobel, E. J., Watters, K. E., Loughrey, D. & Lucks, J. B. RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol. 39, 182–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mortimer, S. A. et al. SHAPE-Seq: high-throughput RNA structure analysis. Curr. Protoc. Chem. Biol. 4, 275–297 (2012).

    PubMed  Google Scholar 

  72. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci.USA 108, 11063–11068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilkinson, K. A., Merino, E. J. & Weeks, K. M. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNAAsp transcripts. J. Am. Chem. Soc. 127, 4659–4667 (2005).

    CAS  PubMed  Google Scholar 

  75. Hiratsuka, T. New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase. J. Biol. Chem. 257, 13354–13358 (1982).

    CAS  PubMed  Google Scholar 

  76. Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as subtrates for various enzymes. Biochim. Biophys. Acta 742, 496–508 (1983).

    CAS  PubMed  Google Scholar 

  77. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    CAS  PubMed  Google Scholar 

  78. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    CAS  PubMed  Google Scholar 

  79. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. McGinnis, J. L. et al. In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl Acad. Sci. USA 112, 2425–2430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Watters, K. E., Abbott, T. R. & Lucks, J. B. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res. 44, e12 (2016).

    PubMed  Google Scholar 

  85. Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA–protein interactions in living cells with SHAPE. Biochemistry 54, 6867–6875 (2015).

    CAS  PubMed  Google Scholar 

  87. Watters, K. E., Yu, A. M., Strobel, E. J., Settle, A. H. & Lucks, J. B. Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods 103, 34–48 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ursuegui, S. et al. Biotin-conjugated N-methylisatoic anhydride: A chemical tool for nucleic acid separation by selective 2′-hydroxyl acylation of RNA. Chem. Commun. 50, 5748–5751 (2014).

    CAS  Google Scholar 

  89. Ursuegui, S. et al. A biotin-conjugated pyridine-based isatoic anhydride, a selective room temperature RNA-acylating agent for the nucleic acid separation. Org. Biomol. Chem. 13, 3625–3632 (2015).

    CAS  PubMed  Google Scholar 

  90. Fernández-García, C. & Powner, M. W. Selective acylation of nucleosides, nucleotides, and glycerol-3-phosphocholine in water. Synlett 28, 78–83 (2017).

    Google Scholar 

  91. Pieken, W. A., Olsen, D. B., Benseler, F., Aurup, H. & Eckstein, F. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253, 314–317 (1991).

    CAS  PubMed  Google Scholar 

  92. Sproat, B. S., Lamond, A. I., Beijer, B., Neuner, P. & Ryder, U. Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res. 17, 3373–3386 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Garry, D. J. et al. Transcription yield of fully 2′-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Res. 43, 7480–7488 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Ovodov, S. Y. & Alakhov, Y. B. mRNA acetylated at 2′-OH-groups of ribose residues is functionally active in the cell-free translation system from wheat embryos. FEBS Lett. 270, 111–114 (1990).

    CAS  PubMed  Google Scholar 

  95. Goldsborough, S. Modified polynucleotides and uses thereof. US Patent US20030039985A1 (2003).

  96. Steen, K.-A., Malhotra, A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease. J. Am. Chem. Soc. 132, 9940–9943 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Steen, K.-A., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease (RNase-detected SHAPE) for direct analysis of covalent adducts and of nucleotide flexibility in RNA. Nat. Protoc. 6, 1683–1694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    CAS  PubMed  Google Scholar 

  99. Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    CAS  PubMed  Google Scholar 

  100. Robertson, S. A., Ellman, J. A. & Schultz, P. G. A general and efficient route for chemical aminoacylation of transfer RNAs. J. Am. Chem. Soc. 113, 2722–2729 (1991).

    CAS  Google Scholar 

  101. Hecht, S. M., Alford, B. L., Kuroda, Y. & Kitano, S. ‘‘Chemical aminoacylation” of tRNA’s. J. Biol. Chem. 253, 4517–4520 (1978).

    CAS  PubMed  Google Scholar 

  102. Wagner, A. M. et al. N-terminal protein modification using simple aminoacyl transferase substrates. J. Am. Chem. Soc. 133, 15139–15147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu, X. et al. Probing of CD4 binding pocket of HIV-1 gp120 glycoprotein using unnatural phenylalanine analogues. Bioorg. Med. Chem. Lett. 24, 5699–5703 (2014).

    CAS  PubMed  Google Scholar 

  104. Chen, S., Fahmi, N. E., Nangreave, R. C., Mehellou, Y. & Hecht, S. M. Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives. Bioorg. Med. Chem. 20, 2679–2689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Matsubara, T., Iijima, K., Watanabe, T., Hohsaka, T. & Sato, T. Incorporation of glycosylated amino acid into protein by an in vitro translation system. Bioorg. Med. Chem. Lett. 23, 5634–5636 (2013).

    CAS  PubMed  Google Scholar 

  106. Fahmi, N. E., Dedkova, L., Wang, B., Golovine, S. & Hecht, S. M. Site-specific incorporation of glycosylated serine and tyrosine derivatives into proteins. J. Am. Chem. Soc. 129, 3586–3597 (2007).

    CAS  PubMed  Google Scholar 

  107. Gao, R., Zhang, Y., Choudhury, A. K., Dedkova, L. M. & Hecht, S. M. Analogues of vaccinia virus DNA topoisomerase I modified at the active site tyrosine. J. Am. Chem. Soc. 127, 3321–3331 (2005).

    CAS  PubMed  Google Scholar 

  108. Kwiatkowski, M., Wang, J. & Forster, A. C. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug. Chem. 25, 2086–2091 (2014).

    CAS  PubMed  Google Scholar 

  109. Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).

    CAS  PubMed  Google Scholar 

  110. Murakami, H., Saito, H. & Suga, H. A versatile tRNA aminoacylation catalyst based on RNA. Chem. Biol. 10, 655–662 (2003).

    CAS  PubMed  Google Scholar 

  111. Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).

    CAS  PubMed  Google Scholar 

  112. Ad, O. et al. Translation of diverse aramid- and 1,3-dicarbonyl-peptides by wild type ribosomes in vitro. ACS Cent. Sci. 5, 1289–1294 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Effraim, P. R. et al. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nat. Chem. Biol. 5, 947–953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fleming, S. R. et al. Flexizyme-enabled benchtop biosynthesis of thiopeptides. J. Am. Chem. Soc. 141, 758–762 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ogawa, A., Namba, Y. & Gakumasawa, M. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Org. Biomol. Chem. 14, 2671–2678 (2016).

    CAS  PubMed  Google Scholar 

  116. Resendiz, M. J. E., Schön, A., Freire, E. & Greenberg, M. M. Photochemical control of RNA structure by disrupting π-stacking. J. Am. Chem. Soc. 134, 12478–12481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mikat, V. & Heckel, A. Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13, 2341–2347 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pothoulakis, G., Ceroni, F., Reeve, B. & Ellis, T. The Spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 3, 182–187 (2014).

    CAS  PubMed  Google Scholar 

  119. Filonov, G. S. & Jaffrey, S. R. RNA imaging with dimeric Broccoli in live bacterial and mammalian cells. Curr. Protoc. Chem. Biol. 8, 1–28 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Miyamae, T. Further search for small molecular inactivants capable of eliciting respiratory mucosal immunogenicity by modifying Sendai virus core RNA. Microbiol. Immunol. 40, 761–766 (1996).

    CAS  PubMed  Google Scholar 

  121. Steward, D. L., Herndon, W. C. & Schell, K. R. Influence of 2′-O-acetylation on the antiviral activity of polyribonucleotides. Biochim. Biophys. Acta 262, 227–232 (1972).

    CAS  PubMed  Google Scholar 

  122. Field, A. K., Tytell, A. A., Lampson, G. P. & Hilleman, M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc. Natl Acad. Sci. USA 58, 1004–1010 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu, J., Duffy, C. D., Chan, C. K. W. & Sutherland, J. D. Solid-phase synthesis and hybrization behavior of partially 2′/3′-O-acetylated RNA oligonucleotides. J. Org. Chem. 79, 3311–3326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Alfonso, L., Ai, G., Spitale, R. C. & Bhat, G. J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer 111, 61–67 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yan, J. et al. Effective small RNA destruction by the expression of a short tandem target mimic in arabidopsis. Plant Cell 24, 415–427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Niu, Q.-W. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the U.S. National Institutes of Health (GM127295 and GM130704) for grant support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this manuscript.

Corresponding author

Correspondence to Eric T. Kool.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks L. Jaeger, Y. Tor, J. Lucks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Non-coding RNAs

(ncRNAs). RNA molecules that are not translated into proteins, but often have other biological roles, such as assisting in splicing, gene regulation and DNA replication.

Transfer RNA

(tRNA). A non-coding RNA molecule that carries an amino acid and helps to decode messenger RNA (mRNA) into protein; tRNAs contain a three-nucleotide sequence (anticodon) that matches to a three-nucleotide sequence on mRNA (codon).

Messenger RNAs

(mRNAs). Coding RNA molecules that convey the genetic information from DNA to facilitate biosynthesis of functional proteins; the mRNA nucleotide sequence is translated into protein by the ribosome.

Psoralen analysis of RNA interactions

(PARIS). A method for mapping RNA structure in cells using the small-molecule psoralen as an RNA crosslinker; crosslinked RNA fragments are analysed with next-generation sequencing and, using informatics methods, duplex regions can be assigned throughout the transcriptome.

Crosslinking immunoprecipitation

(CLIP). A method for studying protein–RNA interactions whereby cells are exposed to high-intensity ultraviolet light, which crosslinks proteins and RNA molecules that are in close proximity; using immunoprecipitation, the complexes can be isolated and RNAs can be identified with sequencing.

Selective 2′-hydroxyl acylation analysed by primer extension

(SHAPE). A method for analysing RNA structure whereby 2′-OH groups in RNA can be acylated with small-molecule reagents in unpaired, accessible and flexible regions; the acylation groups block reverse transcriptase during primer extension. Subsequent analysis of primer extension products is used to predict accessible regions and secondary structures of RNAs.

Dimethyl sulfate footprinting

(DMS footpinting). A method for determining unpaired regions of nucleic acids using DMS, which can methylate the N1 position of adenine and N3 position of cytosine; methylation occurs selectively on unpaired nucleobases and can block reverse transcriptase. Analysis of reverse-transcription products reveals unpaired regions in nucleic acids.

Reverse transcriptases

A class of DNA polymerase enzymes that produces complementary DNA (cDNA) from an RNA template.

Next-generation sequencing

(NGS). A term used to describe different modern sequencing technologies, all of which are capable of determining the sequence of millions of DNA fragments in a single reaction volume.

Ribozyme

An RNA molecule that can carry out an enzymatic function, such as ligation or hydrolysis reactions.

Viral RNA

RNA that defines the genetic material of a virus; this can be single-stranded or double-stranded in structure.

Prebiotic RNA synthesis

Refers to part of the ‘RNA World’ hypothesis that suggests that RNA molecules proliferated before DNA and proteins and relied on self-replication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velema, W.A., Kool, E.T. The chemistry and applications of RNA 2′-OH acylation. Nat Rev Chem 4, 22–37 (2020). https://doi.org/10.1038/s41570-019-0147-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0147-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing