Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Flip the coin: IL-7 and IL-7R in health and disease

Abstract

The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their ‘dark side’ as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7–IL-7R signaling axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atlas of IL-7 production.
Fig. 2: Developmental functions of IL-7.
Fig. 3: Potential mechanisms promoting outgrowth of leukemia cells in the context of IL-7 stimulation, which could explain how a limited resource such as IL-7 may benefit more (pre)leukemic cells than normal lymphoid precursors.
Fig. 4: Classes of IL7R gain-of-function mutants in leukemia.
Fig. 5: Potential pro-tumoral functions of IL-7R-mediated signaling in solid cancers.

Similar content being viewed by others

References

  1. Kim, G. Y., Hong, C. & Park, J.-H. Seeing is believing: illuminating the source of in vivo interleukin-7. Immune Netw. 11, 1–10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sawa, Y. et al. Hepatic interleukin-7 expression regulates T cell responses. Immunity 30, 447–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Moore, N. C., Anderson, G., Smith, C. A., Owen, J. J. & Jenkinson, E. J. Analysis of cytokine gene expression in subpopulations of freshly isolated thymocytes and thymic stromal cells using semiquantitative polymerase chain reaction. Eur. J. Immunol. 23, 922–927 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Onder, L. et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iolyeva, M. et al. Interleukin-7 is produced by afferent lymphatic vessels and supports lymphatic drainage. Blood 122, 2271–2281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shinoda, K. et al. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc. Natl Acad. Sci. USA 113, E2842–E2851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moors, M. et al. Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. Genes Immun. 11, 11–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Sinclair, C., Saini, M., Schim van der Loeff, I., Sakaguchi, S. & Seddon, B. The long-term survival potential of mature T lymphocytes is programmed during development in the thymus. Sci. Signal. 4, ra77 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Buentke, E. et al. Do CD8 effector cells need IL-7R expression to become resting memory cells? Blood 108, 1949–1956 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Leung, G.A. et al. The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development. Development https://doi.org/10.1242/dev.176180 (2019).

  12. Nayar, S. et al. Bimodal expansion of the lymphatic vessels is regulated by the sequential expression of IL-7 and lymphotoxin α1β2 in newly formed tertiary lymphoid structures. J. Immunol. 197, 1957–1967 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Dias, S., Silva, H. Jr., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Vosshenrich, C. A. J. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Shitara, S. et al. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J. Immunol. 190, 6173–6179 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Boudil, A. et al. IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection. Nat. Immunol. 16, 397–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hagenbeek, T. J. et al. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J. Exp. Med. 200, 883–894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seddon, B. & Zamoyska, R. TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J. Immunol. 169, 3752–3759 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Q. et al. Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J. Exp. Med. 203, 165–175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grenningloh, R. et al. Ets-1 maintains IL-7 receptor expression in peripheral T cells. J. Immunol. 186, 969–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Webb, L. V. et al. Survival of single positive thymocytes depends upon developmental control of RIPK1 kinase signaling by the IKK complex independent of NF-κB. Immunity 50, 348–361.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serafini, N., Vosshenrich, C. A. & Di Santo, J. P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Adachi, S. et al. Essential role of IL-7 receptor α in the formation of Peyer’s patch anlage. Int. Immunol. 10, 1–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Chappaz, S., Grtner, C., Rodewald, H.-R. & Finke, D. Kit ligand and Il7 differentially regulate Peyer’s patch and lymph node development. J. Immunol. 185, 3514–3519 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Coles, M. C. et al. Role of T and NK cells and IL7/IL7r interactions during neonatal maturation of lymph nodes. Proc. Natl Acad. Sci. USA 103, 13457–13462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26, 643–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Pearson, C., Silva, A. & Seddon, B. Exogenous amino acids are essential for interleukin-7 induced CD8 T cell growth. PLoS One 7, e33998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mazzucchelli, R. & Durum, S. K. Interleukin-7 receptor expression: intelligent design. Nat. Rev. Immunol. 7, 144–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Xue, H. H. et al. IL-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes. Proc. Natl Acad. Sci. USA 99, 13759–13764 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4, 680–686 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Adachi, T. et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat. Med. 21, 1272–1279 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sumaria, N. et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 208, 505–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, J. et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J. Exp. Med. 215, 1069–1077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin, C. E. et al. Interleukin-7 availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. Immunity 47, 171–182.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, W., Du, J.-Y., Yu, Q. & Jin, J.-O. Interleukin-7 produced by intestinal epithelial cells in response to Citrobacter rodentium infection plays a major role in innate immunity against this pathogen. Infect. Immun. 83, 3213–3223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144, 601–613 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, L. F. et al. Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc. Natl Acad. Sci. USA 109, 12674–12679 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Churchman, S. M. & Ponchel, F. Interleukin-7 in rheumatoid arthritis. Rheumatology (Oxford) 47, 753–759 (2008).

    Article  CAS  Google Scholar 

  44. Krzystek-Korpacka, M. et al. Elevated systemic interleukin-7 in patients with colorectal cancer and individuals at high risk of cancer: association with lymph node involvement and tumor location in the right colon. Cancer Immunol. Immunother. 66, 171–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Belarif, L. et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J. Clin. Invest. 130, 1910–1925 (2019).

    Article  Google Scholar 

  48. Oliveira, M. L., Akkapeddi, P., Ribeiro, D., Melão, A. & Barata, J. T. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: an update. Adv. Biol. Regul. 71, 88–96 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karawajew, L. et al. Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with bcl-2 up-regulation, cortical/mature immunophenotype, and better early cytoreduction of childhood T-cell acute lymphoblastic leukemia. Blood 96, 297–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Maude, S. L. et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125, 1759–1767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barata, J. T. et al. Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica 89, 1459–1467 (2004).

    CAS  PubMed  Google Scholar 

  52. Laouar, Y., Crispe, I. N. & Flavell, R. A. Overexpression of IL-7Rα provides a competitive advantage during early T-cell development. Blood 103, 1985–1994 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Silva, A. et al. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res. 71, 4780–4789 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Rich, B. E., Campos-Torres, J., Tepper, R. I., Moreadith, R. W. & Leder, P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J. Exp. Med. 177, 305–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Abraham, N. et al. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene 24, 5252–5257 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. González-García, S. et al. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7Rα gene expression in early human thymopoiesis and leukemia. J. Exp. Med. 206, 779–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goossens, S. et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat. Commun. 6, 5794 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Girardi, T. et al. The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling. Leukemia 32, 809–819 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Tremblay, C. S. et al. Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 30, 1993–2001 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Sharma, N. D. et al. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia. Cancer Sci. 110, 1931–1946 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Digel, W. et al. Human interleukin-7 induces proliferation of neoplastic cells from chronic lymphocytic leukemia and acute leukemias. Blood 78, 753–759 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Alsadeq, A. et al. IL7R is associated with CNS infiltration and relapse in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 132, 1614–1617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heltemes-Harris, L. M. et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J. Exp. Med. 208, 1135–1149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martín-Lorenzo, A. et al. Infection exposure is a causal factor in B-cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov. 5, 1328–1343 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Nakayama, J. et al. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 113, 1483–1492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heizmann, B., Kastner, P. & Chan, S. Ikaros is absolutely required for pre-B cell differentiation by attenuating IL-7 signals. J. Exp. Med. 210, 2823–2832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katerndahl, C. D. S. et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat. Immunol. 18, 694–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng, Y. et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J. Clin. Invest. 126, 1267–1281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dibirdik, I. et al. Engagement of interleukin-7 receptor stimulates tyrosine phosphorylation, phosphoinositide turnover, and clonal proliferation of human T-lineage acute lymphoblastic leukemia cells. Blood 78, 564–570 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loosveld, M. et al. MYC fails to efficiently shape malignant transformation in T-cell acute lymphoblastic leukemia. Genes Chromosom. Cancer 53, 52–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Fistonich, C. et al. Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J. Exp. Med. 215, 2586–2599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Swainson, L. et al. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 109, 1034–1042 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Barata, J. T., Cardoso, A. A., Nadler, L. M. & Boussiotis, V. A. Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27kip1. Blood 98, 1524–1531 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Barata, J. T. et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med. 200, 659–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ribeiro, D. et al. STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv. 2, 2199–2213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li, Y. et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLoS Med. 13, e1002200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zenatti, P. P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43, 932–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shochat, C. et al. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208, 901–908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Treanor, L. M. et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J. Exp. Med. 211, 701–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yokoyama, K. et al. In vivo leukemogenic potential of an interleukin 7 receptor α chain mutant in hematopoietic stem and progenitor cells. Blood 122, 4259–4263 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shochat, C. et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124, 106–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Weijenborg Campos, L. et al. Oncogenic basic amino acid insertions at the extracellular juxtamembrane region of IL7RA cause receptor hypersensitivity. Blood 133, 1259–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Cramer, S. D. et al. Mutant IL-7Rα and mutant NRas are sufficient to induce murine T cell acute lymphoblastic leukemia. Leukemia 32, 1795–1882 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Delgado-Martin, C. et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 31, 2568–2576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Canté-Barrett, K. et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 30, 1832–1843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Richter-Pechańska, P. et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 7, e523 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Williams, R. T., Roussel, M. F. & Sherr, C. J. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 6688–6693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williams, R. T., den Besten, W. & Sherr, C. J. Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev. 21, 2283–2287 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, V. I. et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc. Natl Acad. Sci. USA 100, 15113–15118 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dalloul, A. et al. Interleukin-7 is a growth factor for Sézary lymphoma cells. J. Clin. Invest. 90, 1054–1060 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cattaruzza, L. et al. Functional coexpression of interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int. J. Cancer 125, 1092–1101 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Frishman, J., Long, B., Knospe, W., Gregory, S. & Plate, J. Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia. J. Exp. Med. 177, 955–964 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Kibe, R. et al. IL-7Rα deficiency in p53null mice exacerbates thymocyte telomere erosion and lymphomagenesis. Cell Death Differ. 19, 1139–1151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Al-Rawi, M. A., Rmali, K., Watkins, G., Mansel, R. E. & Jiang, W. G. Aberrant expression of interleukin-7 (IL-7) and its signalling complex in human breast cancer. Eur. J. Cancer 40, 494–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Suzuki, K. et al. Clinical impact of immune microenvironment in stage I lung adenocarcinoma: tumor interleukin-12 receptor β2 (IL-12Rβ2), IL-7R, and stromal FoxP3/CD3 ratio are independent predictors of recurrence. J. Clin. Oncol. 31, 490–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, J. et al. IL-7 splicing variant IL-7δ5 induces EMT and metastasis of human breast cancer cell lines MCF-7 and BT-20 through activation of PI3K/Akt pathway. Histochem. Cell Biol. 142, 401–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Boesch, M. et al. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. OncoImmunology 7, e1414129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li, J., Liu, J., Mao, X., Tang, Q. & Lu, H. IL-7 receptor blockade inhibits IL-17-producing γδ cells and suppresses melanoma development. Inflammation 37, 1444–1452 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, H. C. et al. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep. 20, e47379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maeurer, M. J. et al. Interleukin-7 (IL-7) in colorectal cancer: IL-7 is produced by tissues from colorectal cancer and promotes preferential expansion of tumour infiltrating lymphocytes. Scand. J. Immunol. 45, 182–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Al-Rawi, M. A., Rmali, K., Mansel, R. E. & Jiang, W. G. Interleukin 7 induces the growth of breast cancer cells through a wortmannin-sensitive pathway. Br. J. Surg. 91, 61–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Ming, J., Zhang, Q., Qiu, X. & Wang, E. Interleukin 7/interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: a mechanism of lymphangiogenesis in lung cancer. Eur. J. Cancer 45, 866–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Mengus, C. et al. Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer. J. Transl. Med. 9, 162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qu, H. et al. IL-7/IL-7 receptor axis stimulates prostate cancer cell invasion and migration via AKT/NF-κB pathway. Int. Immunopharmacol. 40, 203–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Sakre, N. et al. RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget 8, 5992–6002 (2017).

    Article  PubMed  Google Scholar 

  112. Liang, W. S. et al. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 7, e43192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin, D. C. et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat. Genet. 46, 467–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Seol, M. A. et al. Interleukin-7 contributes to the invasiveness of prostate cancer cells by promoting epithelial-mesenchymal transition. Sci. Rep. 9, 6917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ming, J., Jiang, G., Zhang, Q., Qiu, X. & Wang, E. Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol. Immunother. 61, 79–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Cui, L. et al. Overexpression of IL-7 enhances cisplatin resistance in glioma. Cancer Biol. Ther. 13, 496–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roato, I. et al. Bone invading NSCLC cells produce IL-7: mice model and human histologic data. BMC Cancer 10, 12 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rosenberg, S. A. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sportès, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tredan, O. et al. ELYPSE-7: a randomized placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+ lymphocyte count in lymphopenic metastatic breast cancer patients. Annals Onc. 26, 1353–1362 (2015).

    Article  CAS  Google Scholar 

  122. Merchant, M. S. et al. Adjuvant immunotherapy to improve outcome in high-risk pediatric sarcomas. Clin. Cancer Res. 22, 3182–3191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, J.-H. et al. Abstract 4991: hyleukin-7, the Fc-fused interleukin-7, generates anti-tumor activity by modulating both adaptive and innate immune cells in the tumor microenvironment. Cancer Res. https://doi.org/10.1158/1538-7445.AM2019-4991 (2019).

  124. Levy, D. S., Kahana, J. A. & Kumar, R. AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 113, 1723–1729 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Sereti, I. et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 113, 6304–6314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sortino, O. et al. IL-7 treatment supports CD8+ mucosa-associated invariant T-cell restoration in HIV-1-infected patients on antiretroviral therapy. AIDS 32, 825–828 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Sheikh, V. et al. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood 127, 977–988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Patel, A., Patel, J. & Ikwuagwu, J. A case of progressive multifocal leukoencephalopathy and idiopathic CD4+ lymphocytopenia. J. Antimicrob. Chemother. 65, 2697–2698 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Alstadhaug, K. B. et al. Treatment of progressive multifocal leukoencephalopathy with interleukin 7. JAMA Neurol. 71, 1030–1035 (2014).

    Article  PubMed  Google Scholar 

  130. Hotchkiss, R. S. et al. Sepsis and septic shock. Nat. Rev. Dis. Primers 2, 16045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Thampy, L. K. et al. Restoration of T Cell function in multi-drug resistant bacterial sepsis after interleukin-7, anti-PD-L1, and OX-40 administration. PLoS One 13, e0199497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Francois, B. et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3, 98960 (2018).

    Article  PubMed  Google Scholar 

  133. Cramer, S. D., Aplan, P. D. & Durum, S. K. Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 128, 473–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kern, B., Li, W., Bono, C., Lee, L. F. & Kraynov, E. Receptor occupancy and blocking of STAT5 signaling by an anti-IL-7 receptor α antibody in cynomolgus monkeys. Cytometry B Clin. Cytom. 90, 191–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Belarif, L. et al. IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat. Commun. 9, 4483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Akkapeddi, P. et al. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia https://doi.org/10.1038/s41375-019-0434-8 (2019).

  137. Hixon, J. et al. New anti-IL-7Rα monoclonal antibodies show efficacy against T-cell acute lymphoblastic leukemia in pre-clinical models. Leukemia https://doi.org/10.1038/s41375-019-0531-8 (2019).

  138. Senkevitch, E. et al. Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget 9, 22605–22617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Silva, A. et al. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 25, 960–967 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Roberts, K. G. et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Matheson, E.C. et al. Glucocorticoids and selumetinib are highly synergistic in RAS pathway mutated childhood acute lymphoblastic leukemia through upregulation of BIM. Haematologica https://doi.org/10.3324/haematol.2017.185975 (2019).

Download references

Acknowledgements

We thank M. Morre (Revimmune), R. Hotchkiss (Washington University), M. Cheever (University of Washington), R. Gress (NCI), I. Sereti (NIAID), N. Poirier (OSE Immunotherapeutics), C. Foley and A. Veradhachary (Fannin LLC) and E. Schafer (Baylor University) for sharing information on clinical trials, and M. Fernandes for help with draft figure preparation. J.T.B. is funded by the consolidator grant ERC CoG-648455 from the European Research Council, under the European Union’s Horizon 2020 research and innovation programme, and the FAPESP/20015/2014 and PTDC/MEC-HEM/31588/2017 grants from Fundação para a Ciência e a Tecnologia, Portugal; S.K.D. is funded by the intramural program of the US National Cancer Institute, National Institutes of Health, and the Children’s Cancer Foundation; B.S. is funded by the MRC (United Kingdom) under U117573801 and MR/P011225/1.

Author information

Authors and Affiliations

Authors

Contributions

J.T.B., S.K.D. and B.S. wrote the manuscript and approved its final version.

Corresponding author

Correspondence to João T. Barata.

Ethics declarations

Competing interests

S.K.D. is a co-inventor on the patent application “IL-7R-alpha specific antibodies for treating acute lymphoblastic leukemia” filed by the NIH (DHHS). US Patent Application No. 62/238,612.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barata, J.T., Durum, S.K. & Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 20, 1584–1593 (2019). https://doi.org/10.1038/s41590-019-0479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0479-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing