Skip to main content

Advertisement

Log in

Prediction of P-glycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Development of novel in silico methods for questing novel PgP inhibitors is crucial for the reversal of multi-drug resistance in cancer therapy. Here, we report machine learning based binary classification schemes to identify the PgP inhibitors from non-inhibitors using molecular solvation theory with excellent accuracy and precision. The excess chemical potential and partial molar volume in various solvents are calculated for PgP± (PgP inhibitors and non-inhibitors) compounds with the statistical–mechanical based three-dimensional reference interaction site model with the Kovalenko–Hirata closure approximation (3D-RISM-KH molecular theory of solvation). The statistical importance analysis of descriptors identified the 3D-RISM-KH based descriptors as top molecular descriptors for classification. Among the constructed classification models, the support vector machine predicted the test set of Pgp± compounds with highest accuracy and precision of ~ 97% for test set. The validation of models confirms the robustness of state-of-the-art molecular solvation theory based descriptors in identification of the Pgp± compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The performance range is based on five different runs with a different number of test data points, as some of the machine learning methods are known to be size-dependent.

References

  1. Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pirker R, Green A, Crist W, Brodeur GM, Lieber M, Cossman J, Gottesman MM, Pastan I (1989) J Natl Cancer Inst 81:116–124

    CAS  PubMed  Google Scholar 

  2. Juliano RL, Ling V (1976) Biochim Biophys Acta 455:152–162

    CAS  PubMed  Google Scholar 

  3. Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Cell 47:381–389

    CAS  PubMed  Google Scholar 

  4. Gottesman MM, Pastan I (1993) Annu Rev Biochem 62:385–427

    CAS  PubMed  Google Scholar 

  5. Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G (1997) Cancer Chemother Pharmacol 40:S13–19

    CAS  PubMed  Google Scholar 

  6. Germann UA, Harding MW (1995) J Natl Cancer Inst 87:1573–1575

    CAS  PubMed  Google Scholar 

  7. Beketic-Oreskovic L, Duran GE, Chen G, Dumontet C, Sikic BI (1995) J Natl Cancer Inst 87:1593–1602

    CAS  PubMed  Google Scholar 

  8. Chung FS, Santiago JS, Jesus MF, Trinidad CV, See MF (2016) Am J Cancer Res 6:1583–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishna R, Mayer LD (2000) Eur J Pharm Sci 11:265–283

    CAS  PubMed  Google Scholar 

  10. Lum BL, Gosland MP (1995) Hematol Oncol Clin N Am 9:319–336

    CAS  Google Scholar 

  11. Amin ML (2013) Drug Target Insights 7:27–34

    PubMed  PubMed Central  Google Scholar 

  12. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B (2008) Drug Discov Today 13:379–393

    CAS  PubMed  Google Scholar 

  13. Kelly RJ, Draper D, Chen CC, Robey RW, Figg WD, Piekarz RL, Chen X, Gardner ER, Balis FM, Venkatesan AM, Steinberg SM, Fojo T, Bates SE (2011) Clin Cancer Res 17:569–580

    CAS  PubMed  Google Scholar 

  14. Mohana S, Ganesan M, Agilan B, Karthikeyan R, Srithar G, Mary RB, Ambudkar SV (2016) Mol Biosyst 12:2458–2470

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Syed SB, Arya H, Fu IH, Yeh TK, Periyasamy L, Hsieh HP, Coumar MS (2017) Sci Rep 7:7972

    PubMed  PubMed Central  Google Scholar 

  16. Klepsch F, Vasanthanathan P, Ecker GF (2014) J Chem Inf Model 54:218–229

    CAS  PubMed  Google Scholar 

  17. Chen L, Li Y, Zhao Q, Peng H, Hou T (2011) Mol Pharm 8:889–900

    CAS  PubMed  Google Scholar 

  18. Yang M, Chen J, Shi X, Xu L, Xi Z, You L, An R, Wang X (2015) Mol Pharm 12:3691–3713

    CAS  PubMed  Google Scholar 

  19. Broccatelli F (2012) J Chem Inf Model 52:2462–2470

    CAS  PubMed  Google Scholar 

  20. Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G (2011) J Med Chem 54:1740–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Crivori P, Reinach B, PezzettaItalo D, Poggesi I (2006) Mol Pharm 3:33–44

    CAS  PubMed  Google Scholar 

  22. Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA (2002) Mol Pharmacol 61:974–981

    CAS  PubMed  Google Scholar 

  23. Ferreira RJ, dos Santos DJ, Ferreira MU, Guedes RC (2011) J Chem Inf Model 51:1315–1324

    CAS  PubMed  Google Scholar 

  24. Poongavanam V, Haider N, Ecker GF (2012) Bioorg Med Chem 20:5388–5395

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schyman P, Liu R, Wallqvist A (2016) ACS Omega 1:923–929

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ngo T-D, Tran T-D, Le M-T, Thai K-M (2016) SAR QSAR Environ Res 27:747780

    Google Scholar 

  27. Leong MK, Chen H-B, Shih Y-H (2012) PLoS One 7e33829.

  28. Wang YH, Li Y, Yang SL, Yang L (2005) J Comput Aided Mol Des 19:137–147

    CAS  PubMed  Google Scholar 

  29. Wu J, Li X, Cheng W, Xie Q, Liu Y, Zhao C (2009) Qsar Comb Sci 28:969–978

    CAS  Google Scholar 

  30. Ramu A, Ramu N (1994) Cancer Chemother Pharmacol 34:423–430

    CAS  PubMed  Google Scholar 

  31. Pajeva IK, Wiese M (2002) J Med Chem 45:5671–5686

    CAS  PubMed  Google Scholar 

  32. Tawari NR, Bag S, Degani MS (2008) J Mol Model 14:911–921

    CAS  PubMed  Google Scholar 

  33. Pajeva IK, Globisch C, Wiese M (2009) ChemMedChem 4:1883–1896

    CAS  PubMed  Google Scholar 

  34. Shukla S, Kouanda A, Silverton L, Talele TT, Ambudkar SV (2014) Mol Pharm 11:2313–2322

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Langer T, Eder M, Hoffmann RD, Chiba P, Ecker GF (2004) Arch Pharm 337:317–327

    CAS  Google Scholar 

  36. Wang RB, Kuo CL, Lien LL, Lien EJ (2003) J Clin Pharm Ther 28:203–228

    CAS  PubMed  Google Scholar 

  37. Tardia P, Stefanachi A, Niso M, Stolfa DA, Mangiatordi GF, Alberga D, Nicolotti O, Lattanzi G, Carotti A, Leonetti F, Perrone R, Berardi F, Azzariti A, Colabufo NA, Cellamare S (2014) J Med Chem 57:6403–6418

    CAS  PubMed  Google Scholar 

  38. Pellicani RZ, Stefanachi A, Niso M, Carotti A, Leonetti F, Nicolotti O, Perrone R, Berardi F, Cellamare S, Colabufo NA (2012) J Med Chem 55:424–436

    CAS  PubMed  Google Scholar 

  39. Pleban JK, Rinner U, Chiba P, Ecker GF (2012) J Med Chem 55:3261–3273

    PubMed  PubMed Central  Google Scholar 

  40. Globisch C, Pajeva IK, Wiese M (2006) Bioorg Med Chem 14:1588–1598

    CAS  PubMed  Google Scholar 

  41. Parveen Z, Brunhofer G, Jabeen I, Erker T, Chiba P, Ecker GF (2014) Bioorg Med Chem 22:2311–2319

    CAS  PubMed  Google Scholar 

  42. Molecular Operating Environment (MOE) (2018) 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  43. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H et al. (2016) Gaussian16, revision B.01. Gaussian Inc.: Wallingford (complete citation is provided in the ESM).

  45. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TEIII, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK et al. AMBER 2018, University of California, San Francisco. (complete citation is provided in the ESM)

  46. Roy D, Hinge VK, Kovalenko A (2019) ACS Omega 4:3055–3060

    CAS  Google Scholar 

  47. Roy D, Kovalenko A (2019) J Phys Chem A 123:4087–4093

    CAS  PubMed  Google Scholar 

  48. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    CAS  Google Scholar 

  49. Kovalenko A, Ten-no S, Hirata F (1999) J Comput Chem. 20:928–936

    CAS  Google Scholar 

  50. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  51. Robinson D, Gomez M, Demeshev B, Menne D, Nutter B, Johnston L, Bolker B, Briatte F, Arnold J, Gabry J, Broom (2017) Convert statistical analysis objects into tidy data frames

  52. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  53. Kuhn M (2008) J Stat Softw 28(5):1–26

    Google Scholar 

  54. Ridgeway G (2007) Generalized boosted models: a guide to the gbm Package. R package vignette. https://CRAN.R-project.org/package=gbm

  55. Liaw R, Wiener M (2002) R News 2:18–22

    Google Scholar 

  56. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2008) e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.5–18. https://CRAN.R-project.org/package=e1071

  57. Schliep, K.; Hechenbichler, K (2016) Weighted k-Nearest Neighbors for Classification, Regression and Clustering. R package version 1.3. https://cran.r-project.org/package=kknn

  58. Hinge VK, Roy D, Kovalenko A (2019) J Comput Aided Mol Des 33:605–611

    CAS  PubMed  Google Scholar 

  59. Sun HM (2005) J. Med. Chem. 48:4031–4039

    CAS  PubMed  Google Scholar 

  60. Tan W, Mei H, Chao L, Liu TF, Pan XC, Shu M, Yang L (2013) J Comput-Aided Mol Des 27:1067–1073

    CAS  PubMed  Google Scholar 

  61. Yang M, Chen J, Xu L, Shi X, Zhou X, Xi Z, An R, Wang X (2018) RSC Adv 8:11661–11683

    CAS  Google Scholar 

  62. Müller H, Pajeva IK, Globisch C, Wiese M (2008) Bioorg Med Chem 16:2448–2462

    PubMed  Google Scholar 

  63. Rapposelli S, Coi A, Imbriani M, Bianucci AM (2012) Int J Mol Sci 13:6924–6943

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eric S, Kalinic M, Ilic K, Zloh M (2014) SAR QSAR Environ Res 25:939–966

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSERC Discovery Grant (RES0029477), and Alberta Prion Research Institute Explorations VII Research Grant (RES0039402). Generous computing time provided by WestGrid (www.westgrid.ca) and Compute Canada/Calcul Canada (www.computecanada.ca) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Kovalenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 4323 kb)

Supplementary file2 (DOCX 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinge, V.K., Roy, D. & Kovalenko, A. Prediction of P-glycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors. J Comput Aided Mol Des 33, 965–971 (2019). https://doi.org/10.1007/s10822-019-00253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00253-5

Keywords

Navigation