Skip to main content
Log in

Synthesis, Crystal Structures, Density Functional Theory (DFT) Calculations and Molecular Orbital Calculations of Two New Metal-Free Macrocyclic Schiff Bases Derived from 2,6-Dibenzoyl-4-alkylphenol and Diamines

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new phenol-based metal-free macrocyclic Schiff bases, cyclo-bis{2-[benz(N-propan-1,3-diyl)imidoyl][6-benzimidoyl][4-methyl]phenol} and cyclo-bis{2-[benz(N-butan-1,4-diyl)imidoyl][6-benzimidoyl][4-tert-butyl]phenol} have been synthesized and their structures determined by single crystal X-ray crystallography. The DFT geometry optimization calculations were performed to compare experimental and theoretical results. A comparison of the dihedral angles between mean planes of the central phenolato rings and peripheral phenyl rings in the crystal with the DFT theoretical calculations has been included for each molecule. Electronic transitions have been predicted by DFT molecular orbital calculations and compared with experimental absorption spectral data.

Graphic Abstract

A one-pot synthesis, crystal structure and theoretical calculations of 20- and 22-membered macrocyclic ligands are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5: DFT
Scheme 3
Fig. 6

Similar content being viewed by others

References

  1. Alexander V (1995) Chem Rev 95:273–342

    CAS  Google Scholar 

  2. Chu Z, Huang W, Wang L, Gou S (2008) Polyhedron 27:1079–1092

    CAS  Google Scholar 

  3. Tamburini S, Vigato PA (2004) Coord Chem Rev 248:1717–2128

    Google Scholar 

  4. Tian Y, Tong J, Frenzen G (1999) Sun J-Yu. J Org Chem 64:1442–1446

    CAS  Google Scholar 

  5. Atkins AJ, Black D, Blake AJ, Becerra AM, Parsons S, Ramirez LK, Schroder M (1996) Chem Commun 4:457–464

    Google Scholar 

  6. Tian YQ, Tong J (1997) Chin Chem Lett 8:107–110

    CAS  Google Scholar 

  7. Biwer A, Antranikian G, Heinzle E (2002) Appl Microbiol Biotechnol 59:609–617

    CAS  Google Scholar 

  8. Del Valle EMM (2010) Process Biochem 31:1033–1046

    Google Scholar 

  9. Thatiparti TR, Shoffstall AJ, Von Recum HA (2010) Biomaterials 31:2335–2347

    CAS  Google Scholar 

  10. Marcolino VA, Zanin GM, Durrant LR, Benassi MDT, Matioli GJ (2011) Agric Food Chem 59:3348–3357

    CAS  Google Scholar 

  11. De Oliveira V E, Almeida EWC, Castro HV, Edwards HGM, Dos Santos HF, de Oliveira LFC (2011) J Phys Chem A 115:8511–8519

    Google Scholar 

  12. Brusseau ML, Wang X (1997) Wang W -Z. Environ Sci Technol 31:1087–1092

    CAS  Google Scholar 

  13. Hoger S (2004) Chem Eur J 10:1320–1329

    Google Scholar 

  14. Zhang W, Moore JS (2005) J Am Chem Soc 127:11863–11870

    CAS  Google Scholar 

  15. Zang L, Che Y, Moore JS (2008) Acc Chem Res 41:1596–1608

    CAS  Google Scholar 

  16. Akine S, Taniguchi T, Nabeshima T (2001) Tetrahedron Lett 42:8861–8864

    CAS  Google Scholar 

  17. Gallant AJ, MacLachlan MJ (2003) Angew Chem Int Ed 42:5307–5310

    CAS  Google Scholar 

  18. Hui JK-H, MacLachlan MJ (2006) Chem Commun 23:2480–2482

    Google Scholar 

  19. Guieu S, Crane AK, MacLachlan MJ (2011) Chem Commun 47:1169–1171

    CAS  Google Scholar 

  20. Chen Z, Guieu S, White NG, Lelj F, MacLachlan MJ (2016) Chem Eur J 22:17657–17672

    CAS  Google Scholar 

  21. Pedersen CJ (1988) Angew Chem Int Ed Engl 27:1021–1027

    Google Scholar 

  22. Pedersen CJ (1967) J Am Chem Soc 86:7017–7036

    Google Scholar 

  23. Dietrich B, Lehn JM, Sauvage JP (1969) Tetrahedron Lett 10:2885–2888

    Google Scholar 

  24. Lehn J (1988) Angew Chem Int Ed Engl 27:89–112

    Google Scholar 

  25. Cram DJ, Kaneda T, Helgeson RC, Lein GM (1979) J Am Chem Soc 101:6752–6754

    CAS  Google Scholar 

  26. Cram DJ (1986) Angew Chem Int Ed Engl 25:1039–1134

    Google Scholar 

  27. Asatkar AK, Verma VK, Jain TA, Singh R, Gupta SK, Butcher RJ (2011) Acta Crystallogr E67:o2724–o2725

    Google Scholar 

  28. Gupta SK, Anjana C, Butcher RJ, Sen N (2010) Acta Crystallogr E66:m1531–m1532

    Google Scholar 

  29. Gupta SK, Anjana C, Sen N, Jasinski JP, Golen JA (2012) J Chem Crystallogr 42:960–967

    CAS  Google Scholar 

  30. Ganaie JA, Kumar J, Butcher RJ, Jasinski JP, Gupta SK (2016) J Chem Crystallogr 46:93–104

    CAS  Google Scholar 

  31. Gupta SK, Anjana C, Sen N, Butcher RJ, Jasinski JP, Golen JA (2015) Polyhedron 89:219–231

    CAS  Google Scholar 

  32. Gupta SK, Sen N, Ganaie JA, Butcher RJ, Jasinski JP (2017) J Coord Chem 70:3147–3170

    CAS  Google Scholar 

  33. Rigaku Oxford Diffraction (2015) CrysAlis Pro. The Woodlands

  34. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Google Scholar 

  35. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Google Scholar 

  36. Sheldrick GM (2008) Acta Crystallogr A 64:112–118

    CAS  Google Scholar 

  37. Johnson CK (1976) ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge

  38. Allen FH, Kennard O, Watson DG, Brammer L, Orpen A, Taylor RJ (1987) Chem Soc Perkin Trans 2:S1–S19

    Google Scholar 

  39. Schmidt JR, Polik WF (2007) WebMO Pro, version 8.0.01e; WebMO, LLc: Holland. http://www.webmo.net

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  41. Becke AD (1998) Phys Rev A 38:3098

    Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  43. Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  44. Pearl GM, Zerner MC, Broo A, McKelvey J (1998) J Comput Chem 19:781–796

    CAS  Google Scholar 

  45. Holland JP, Barnard PJ, Bayly SR, Dilworth JR, Green JC (2009) Inorg Chim Acta 362:402–406

    CAS  Google Scholar 

  46. Guillaumont D, Nakamura S (2000) Dyes Pigm 46:85–92

    CAS  Google Scholar 

  47. Origin 8.0. Origin Lab (2007) Origin Lab Corporation, Northampton

  48. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Government of India through the Department of Science and Technology [Project no. SR/S1/IC-38/2007] and the University Grants Commission [Project no. F.37-500/2009 (SR)] is gratefully acknowledged. RJB wishes to acknowledge the National Science Foundation for funds to purchase the diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 155 kb)

Supplementary material 2 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganaie, J.A., Sen, N., Butcher, R.J. et al. Synthesis, Crystal Structures, Density Functional Theory (DFT) Calculations and Molecular Orbital Calculations of Two New Metal-Free Macrocyclic Schiff Bases Derived from 2,6-Dibenzoyl-4-alkylphenol and Diamines. J Chem Crystallogr 50, 400–409 (2020). https://doi.org/10.1007/s10870-019-00812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00812-6

Keywords

Navigation