Skip to main content
Log in

β-Chain Hydrogen-Bonding in 4-Hydroxycoumarins

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In the solid state, some 3-substituted 4-hydroxycoumarins β-ketoester enols form infinite translational hydrogen-bonded β-chains with varying degrees of alignment between adjacent delocalized systems. Nine related structures have been studied. At the strongest, intermolecular associations are polar, purely translation neighbors interact essentially along a 717 pm crystallographic repeat with shortened 260 pm intermolecular O·OH-bond contacts. Four distinctive features characterize these structures: (1) moderately delocalized β-ketoester enol structures, (2) translational misalignment angles between oxygen donors and acceptors less than 10°, (3) buttressing intermolecular C–H·O contacts co-planar with and near the intermolecular O–H·O interactions, and (4) fully extended ketoester enol hydrogen-bond (ap-anti-anti) geometries. For non-polar β-chains in related coumarin systems, β-ketoester enol alignments are typically poorer, involve hydrogen-bonding between glide relatives, ap-syn-(anti) geometry, and the intermolecular O·OH-bond contacts are longer.

Graphic Abstract

Substituted 4-hydroxycoumarins related to phenprocoumon can form well-aligned polar translational β-chains between enolones showing resonance assisted Hydrogen-bonding and a 717 pm repeat along a crystallographic axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley, Chichester

    Google Scholar 

  2. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J Am Chem Soc 111:1023–1028

    CAS  Google Scholar 

  3. Bertolasi V, Gilli P, Ferretti V, Gilli G (1996) Resonance-assisted O-H…O hydrogen bonding: its role in the crystalline self-recognition of β-diketone enols and its structural and IR characterization. Chem Eur J 2(8):925–934

    CAS  Google Scholar 

  4. Sanz P, Mo O, Yanez M, Elguero J (2007) Resonance-assisted hydrogen bonds: a critical examination. structure and stability of the enols of β-diketones and β-enaminones. J Phys Chem 111:3585–3591

    CAS  Google Scholar 

  5. Gora RW, Maj M, Grabowski SJ (2013) Resonance-assisted hydrogen bonds revisited Resonance stabilization vs. charge delocalization. Phys Chem Chem Phys 15:2514–2522

    CAS  Google Scholar 

  6. Gilli P, Pretto L, Bertolasi V, Gilli G (2009) Predicting hydrogen-bond strengths from acid-base molecular properties the pKa slide rule: toward the solution of a long-lasting problem. Acc Chem Res 42(1):33–44

    CAS  Google Scholar 

  7. Tadeusz M, Krygowski J, Zachara-Horeglad E (2009) Resonance-assisted hydrogen bonding in terms of substituent effect. Tetrahedron 65:2010–2014

    Google Scholar 

  8. Beck JF, Mo Y (2007) How resonance assists hydrogen bonding interactions: an energy decomposition analysis. J Comput Chem 28:455–466

    CAS  Google Scholar 

  9. Grabowski JS (2009) Covalent character of hydrogen bonds enhanced by π-electron delocalization. Croat Chem Acta 82:185–192

    CAS  Google Scholar 

  10. Gilli G Bertolasi, Feretti V, Gilli P (1993) Resonance assisted hydrogen bond. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketones and its relevance to molecular association. Acta Crystallogr B49:564–576

    CAS  Google Scholar 

  11. Trifonov L, Bieri JH, Prewo R, Dreiding AS, Rast DM, Hoesch L (1982) The constitution of veretinolide, a new derivative of tetronic acid, Produced by Verticillium Intertextum. Tetrahedron 38(3):397–403

    CAS  Google Scholar 

  12. Katrusiak A (1993) Structure of 2-methyl-1,3-cyclohexandione crystals. J Crystallogr Spectrosc Res 23(5):367–372

    CAS  Google Scholar 

  13. Gaultier J, Hauw C (1966) Structure del’hydroxy-4-coumarine. Eau d’Hydroation et Cohesion Cristalline. Acta Crystallogr 20:646–651

    CAS  Google Scholar 

  14. Bravic G, Gaultier J, Hauw C (1971) Structure cristalline et moleculaire du marcoumar. C R Acad Sci Paris C272:1112–1114

    Google Scholar 

  15. Bravic G, Gaultier J, Geoffre S, Hauw C (1974) Structure crystalline d’une antivitamine K: 1’α-naphthyl-3-hydroxy-4-coumarine. C R Acad Sci Paris 278:601–603

    CAS  Google Scholar 

  16. Valente EJ, Trager WF, Lingafelter EC (1976) (–)–3–(1–Phenylpropyl)–4–hydroxycoumarin. Acta Crystallogr B32:277–279

    CAS  Google Scholar 

  17. Manolov I, Maichle-Moessmer C (2007) Crystal structure of 4-hydroxy-3-[1-phenyl-2-(4-methoxybenzoyl)ethyl]-2H-1-benzopyran-2-one. Anal Sci 23:X79 (See CCDC 637813)

    Google Scholar 

  18. Bravic G, Gaultier J, Hauw C (1968) Structure crystalline et moleculaire du dicoumarol. C R Acad Sci Paris 267:1790–1795

    CAS  Google Scholar 

  19. Alcock NW, Hough E (1972) The crystals and molecular structure of 3,3-methylene(bis-6-bromo-4-hydroxycoumarin): unusual molecular interactions. Acta Crystallogr B28:1957–1960

    Google Scholar 

  20. Valente EJ, Eggleston DS (1989) Structure of (phenyl)bis(4-hydroxybenzo-2H-pyran-2-one-3-yl)methane. Acta Crystallogr C45:785–787

    CAS  Google Scholar 

  21. Stancheva S, Maichle-Mössmerb C, Manolova I (2007) Synthesis, structure and acid-base behaviour of some 4-hydroxycoumarin derivatives. Zeitschrift fur Naturforschung 62:737–741

    Google Scholar 

  22. Ravikumar N, Gopikrishna G, Solomon KA (2012) 3,3’-[(4-Nitrophenyl)methylene]-bis(4-hydroxy-2H-chromen-2-one). Acta Crystallogr E 68:o265

    CAS  Google Scholar 

  23. Li M-K, Li J, Liu B-H, Zhou Y, Li X, Xue X-Y, Hou Z, Luo X-X (2013) Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives. Eur J Pharmacol 721:151–157

    CAS  Google Scholar 

  24. Chang-Wei LV, Yao-Ping WU, Jian L, Xin-Gang J (2012) 3,3’-(4-Dimethylamino benzylidene)-bis-(4-hydroxycoumarin). Chin J Struct Chem 31:847–850

    Google Scholar 

  25. Manolol I, Ströebele M, Meyer H-J (2008) Crystal structure of 4-hydroxy-3-[(2-oxo-2H-chromen-3-yl)-(3,4,5-trimethoxyphenyl)methyl]chromen-2-one. Anal Sci 24:x135–x136

    Google Scholar 

  26. Manolov I, Morgenstern B, Hegetschweiler K (2012) Synthesis and structure of ethyl 2-[bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]benzoate. X-Ray Struct Anal Online 28:83–84

    CAS  Google Scholar 

  27. Manolov I, Morgenstern B, Hegetschweiler K (2012) Synthesis and Structure of 4-Hydroxy-3-[(2-oxo-2H-chromen-3-yl)-3,4-dihydroxyphenyl)methyl]chromen-2-one ethanol solvate. X-Ray Struct Anal Online 28:87–88

    CAS  Google Scholar 

  28. Manolov I, Maichle-Moessmer C (2013) Synthesis and crystal structure of 4-hydroxy-3-[(3E)-3-(hydroxyimino)-1-(4-nitrophenyl)butyl]-2H-chromen-2-one. Bulg Chem Commun 45(1):109–113

    CAS  Google Scholar 

  29. Asas M, Oo C-W, Osman H, Quah CK, Fun H-K (2010) 3-[(E)-3-(2,4-Dichloro phenyl)prop-2-enoyl]-4-hydroxy-2H-chromen-2-one. Acta Crystallogr 66E:o3022–o3023

    Google Scholar 

  30. Naveen S, Adlakha P, Upadhyay K, Shah A, Anandalwar SM, Prasad JS (2006) Crystal structure of 3-nitro-4-hydroxycoumarin. Anal Sci 22:x103–x104

    CAS  Google Scholar 

  31. Stefanou V, Matiadis D, Melagraki G, Afantitis A, Athanasellis G, Igglessi-Markopoulou O, McKee V, Markopoulos J (2011) Functionalized 4-hydroxycoumarins: novel synthesis, crystal structure and DFT calculations. Molecules 16:384–402

    CAS  Google Scholar 

  32. Pohl LR, Haddock R, Garland WA, Trager WF (1975) Synthesis and thin-layer chromatographic, ultraviolet, and mass spectral properties of the anticoagulant phenprocoumon and its monohydroxylated derivatives. J Med Chem 18(5):513–519

    CAS  Google Scholar 

  33. West BD, Link KP (1965) The resolution and absolute configuration of marcumar. J Heterocycl Chem 2(1):93–94

    CAS  Google Scholar 

  34. Kischel J, Mertins K, Michalik D, Zapf A, Bellera M (2007) A general and efficient iron-catalyzed benzylation of 1,3-dicarbonyl compounds. Adv Synth Catal 2007(349):865–870

    Google Scholar 

  35. Theerthagiri P, Lalitha A (2010) Benzylation of β-dicarbonyl compounds and 4-hydroxycoumarin using TMSOTf catalyst: a simple, mild, and efficient method. Tetrahedron 51:5454–5458

    CAS  Google Scholar 

  36. West BD, Preis S, Schroeder CH, Link KP (1961) Studies on 4-hydroxycoumarins. XVII. The resolution and absolute configuration of warfarin. J Am Chem Soc 83(12):2676–2679

    CAS  Google Scholar 

  37. Liu Z-Q, Zhang Y, Zhao L, Li Z, Wang J, Li H, Wu L-M (2011) Iron-Ctalyzed stereospecific olefin synthesis by direct coupling of alcohols and alkenes with alcohols. Org Lett 13(9):2208–2211

    CAS  Google Scholar 

  38. Appendino G, Cravotto G, Tagliapietra S, Ferraro S, Nano GM (1991) The chemistry of coumarin derivatives. Part 3. Synthesis of 3-alkyl-4-hydroxycoumarins by reductive fragmentation of 3,3’-alkylidine-4,4’-dihydroxybis[coumarins]. Helv Chim Acta 74:1451–1458

    CAS  Google Scholar 

  39. Stahmann MA, Wolff I, Link KP (1943) Studies on 4-hydroxycoumarins. I. The synthesis of 4-hydroxycoumarins. J Am Chem Soc 65:2285–2287

    CAS  Google Scholar 

  40. Clark RS, Reid JS (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr A51:887–897

    CAS  Google Scholar 

  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122 (recent program release from 2018)

  42. Mercury (2016) version 3.9, Cambridge Crystallographic Data Center

  43. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    CAS  Google Scholar 

  44. Valente EJ, Eggleston DS, Schomaker V (1986) Structures of Five trans–2–hydroxy and methoxy–2–methyl–3,4–dihydro–4-aryl–2H,5H–pyrano [3,2–c] [1]benzopyran–5–ones. Acta Crystallogr A C42:1809–1813

    CAS  Google Scholar 

  45. Etter MC, MacDonald JC, Bernstein J (1990) Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr A B46:256–262

    CAS  Google Scholar 

Download references

Acknowledgements

EJV thanks the National Science Foundation (MRI-0618148) for support of crystallographic equipment. Thanks also go to Dr. Verner Schomaker (deceased) of the University of Washington for his encouragement, acumen, persistence and pedagogy with difficult structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Valente.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, TV.H., Carroll, T.S., Bejan, D.S. et al. β-Chain Hydrogen-Bonding in 4-Hydroxycoumarins. J Chem Crystallogr 50, 387–399 (2020). https://doi.org/10.1007/s10870-019-00813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00813-5

Keywords

Navigation