Skip to main content
Log in

3D Fluid Flow Estimation with Integrated Particle Reconstruction

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps, utilizing either a pure Eulerian or pure Lagrangian approach. Eulerian methods perform a voxel-based reconstruction of particles per time step, followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. Alternatively, Lagrangian methods reconstruct an explicit, sparse set of particles and track the individual particles over time. Physical constraints can only be incorporated in a post-processing step when interpolating the particle tracks to a dense motion field. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-resolution input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (\({\approx }\,70\%\)) improved results over our recently published baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of state-of-the-art tracking-based methods that require much longer sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Package 9 in http://fluid.irisa.fr/data-eng.htm.

References

  • Adams, B., Pauly, M., Keiser, R., & Guibas, L. J. (2007). Adaptively sampled particle fluids. In ACM SIGGRAPH.

  • Adrian, R., & Westerweel, J. (2011). Particle image velocimetry. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Atkinson, C., & Soria, J. (2009). An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Experiments in Fluids, 47(4), 553.

    Article  Google Scholar 

  • Barbu, I., Herzet, C., & Mémin, E. (2013). Joint estimation of volume and velocity in TomoPIV. In 10th international symposium on particle image velocimetry—PIV13.

  • Basha, T., Moses, Y., & Kiryati, N. (2010). Multi-view scene flow estimation: A view centered variational approach. In CVPR.

  • Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  MathSciNet  Google Scholar 

  • Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific, 48, 334.

    Google Scholar 

  • Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Bolte, J., Daniilidis, A., & Lewis, A. (2007). The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17(4), 1205–1223.

    Article  Google Scholar 

  • Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1), 459–494.

    Article  MathSciNet  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods. Berlin: Springer.

    Book  Google Scholar 

  • Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S., & Le Sant, Y. (2011). Fast and accurate PIV computation using highly parallel iterative correlation maximization. Experiments in Fluids, 50(4), 1169.

    Article  Google Scholar 

  • Cheminet, A., Leclaire, B., Champagnat, F., Plyer, A., Yegavian, R., & Le Besnerais, G. (2014). Accuracy assessment of a Lucas–Kanade based correlation method for 3D PIV. In International symposia on applications of laser techniques to fluid mechanics.

  • Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society, 49(1), 1–23.

    Article  MathSciNet  Google Scholar 

  • Dalitz, R., Petra, S., & Schnörr, C. (2017). Compressed motion sensing. In SSVM.

  • Discetti, S., & Astarita, T. (2012). Fast 3D PIV with direct sparse cross-correlations. Experiments in Fluids, 53(5), 1437–1451.

    Article  Google Scholar 

  • Elsinga, G. E., Scarano, F., Wieneke, B., & Oudheusden, B. W. (2006). Tomographic particle image velocimetry. Experiments in Fluids, 41(6), 933–947.

    Article  Google Scholar 

  • Gesemann, S., Huhn, F., Schanz, D., & Schröder, A. (2016). From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In 10th international symposium on applications of laser techniques to fluid mechanics.

  • Gregson, J., Ihrke, I., Thuerey, N., & Heidrich, W. (2014). From capture to simulation: Connecting forward and inverse problems in fluids. ACM ToG, 33(4), 139.

    Article  Google Scholar 

  • Hartley, R. I., & Saxena, T. (1997). The cubic rational polynomial camera model. In Image understanding workshop (pp. 649–653).

  • Huguet, F., & Devernay, F. (2007). A variational method for scene flow estimation from stereo sequences. In ICCV.

  • Kähler, C. J., et al. (2016). Main results of the 4th international PIV challenge. Experiments in Fluids, 57(6), 97.

    Article  Google Scholar 

  • Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., & Gross, M. (2015). Data-driven fluid simulations using regression forests. ACM ToG, 34(6), 199.

    Article  Google Scholar 

  • Langtangen, H. P., Mardal, K. A., & Winther, R. (2002). Numerical methods for incompressible viscous flow. Advances in Water Resources, 25(8), 1125–1146.

    Article  Google Scholar 

  • Lasinger, K., Vogel, C., Pock, T., & Schindler, K. (2018). Variational 3D-PIV with sparse descriptors. Measurement Science and Technology, 29(6), 064010.

    Article  Google Scholar 

  • Lasinger, K., Vogel, C., Pock, T., & Schindler, K. (2019). 3D fluid flow estimation with integrated particle reconstruction. In T. Brox, A. Bruhn, & M. Fritz (Eds.), Pattern recognition (pp. 315–332). Cham: Springer.

    Chapter  Google Scholar 

  • Lasinger, K., Vogel, C., & Schindler, K. (2017). Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In ICCV.

  • Li, Y., et al. (2008). A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 9, N31.

    Article  Google Scholar 

  • Maas, H. G., Gruen, A., & Papantoniou, D. (1993). Particle tracking velocimetry in three-dimensional flows. Experiments in Fluids, 15(2), 133–146.

    Article  Google Scholar 

  • Menze, M., & Geiger, A. (2015). Object scene flow for autonomous vehicles. In CVPR.

  • Michaelis, D., Poelma, C., Scarano, F., Westerweel, J., & Wieneke, B. (2006). A 3D time-resolved cylinder wake survey by tomographic PIV. In ISFV12.

  • Michalec, F. G., Schmitt, F., Souissi, S., & Holzner, M. (2015). Characterization of intermittency in zooplankton behaviour in turbulence. European Physical Journal, 38(10), 108.

    Google Scholar 

  • Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8), 1703.

    Article  MathSciNet  Google Scholar 

  • Perlman, E., Burns, R., Li, Y., & Meneveau, C. (2007). Data exploration of turbulence simulations using a database cluster. In Conference on supercomputing.

  • Petra, S., Schröder, A., & Schnörr, C. (2009). 3D tomography from few projections in experimental fluid dynamics. In Imaging measurement methods for flow analysis.

  • Pock, T., & Sabach, S. (2016). Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences, 9(4), 1756–1787.

    Article  MathSciNet  Google Scholar 

  • Rabe, C., Müller, T., Wedel, A., & Franke, U. (2010). Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In ECCV.

  • Raffel, M., Willert, C. E., Wereley, S., & Kompenhans, J. (2018). Particle image velocimetry: A practical guide. Berlin: Springer.

    Book  Google Scholar 

  • Reddy, J. N. (1993). An introduction to the finite element method. New York: McGraw-Hill.

    Google Scholar 

  • Richard, A., Vogel, C., Blaha, M., Pock, T., & Schindler, K. (2017). Semantic 3D reconstruction with finite element bases. In 28th British machine vision conference (BMVC 2017), BMVC.

  • Ruhnau, P., Guetter, C., Putze, T., & Schnörr, C. (2005). A variational approach for particle tracking velocimetry. Measurement Science and Technology, 16(7), 1449.

    Article  Google Scholar 

  • Ruhnau, P., & Schnörr, C. (2007). Optical stokes flow estimation: An imaging-based control approach. Experiments in Fluids, 42(1), 61–78.

    Article  Google Scholar 

  • Ruhnau, P., Stahl, A., & Schnörr, C. (2006). On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In GCPR.

  • Schanz, D., Gesemann, S., & Schröder, A. (2016). Shake-the-box: Lagrangian particle tracking at high particle image densities. Experiments in Fluids, 57(5), 70.

    Article  Google Scholar 

  • Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., & Novara, M. (2012). Non-uniform optical transfer functions in particle imaging: Calibration and application to tomographic reconstruction. Measurement Science and Technology, 24(2), 024009.

    Article  Google Scholar 

  • Schneiders, J. F., & Scarano, F. (2016). Dense velocity reconstruction from tomographic PTV with material derivatives. Experiments in Fluids, 57(9), 139.

    Article  Google Scholar 

  • Soloff, S. M., Adrian, R. J., & Liu, Z. C. (1997). Distortion compensation for generalized stereoscopic particle image velocimetry. Measurement Science and Technology, 8, 1441.

    Article  Google Scholar 

  • Taylor, C., & Hood, P. (1973). A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids, 1(1), 73–100.

    Article  MathSciNet  Google Scholar 

  • Tompson, J., Schlachter, K., Sprechmann, P., & Perlin, K. (2016). Accelerating Eulerian fluid simulation with convolutional networks. CoRR arXiv:1607.03597.

  • Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., & Theobalt, C. (2010). Joint estimation of motion, structure and geometry from stereo sequences. In ECCV.

  • Vogel, C., Schindler, K., & Roth, S. (2011). 3D scene flow estimation with a rigid motion prior. In ICCV.

  • Vogel, C., Schindler, K., & Roth, S. (2013). Piecewise rigid scene flow. In ICCV.

  • Vogel, C., Schindler, K., & Roth, S. (2015). 3D scene flow estimation with a piecewise rigid scene model. IJCV, 115(1), 1–28.

    Article  MathSciNet  Google Scholar 

  • Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., & Cremers, D. (2011). Stereoscopic scene flow computation for 3D motion understanding. IJCV, 95(1), 29–51.

    Article  Google Scholar 

  • Wieneke, B. (2008). Volume self-calibration for 3D particle image velocimetry. Experiments in Fluids, 45(4), 549–556.

    Article  Google Scholar 

  • Wieneke, B. (2013). Iterative reconstruction of volumetric particle distribution. Measurement Science and Technology, 24(2), 024008.

    Article  Google Scholar 

  • Wu, Z., Hristov, N., Hedrick, T., Kunz, T., & Betke, M. (2009). Tracking a large number of objects from multiple views. In ICCV.

  • Xiong, J., Idoughi, R., Aguirre-Pablo, A. A., Aljedaani, A. B., Dun, X., Fu, Q., et al. (2017). Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Transactions on Graphics, 36(4), 36:1–36:14.

    Article  Google Scholar 

  • Zhu, Y., & Bridson, R. (2005). Animating sand as a fluid. ACM Transactions on Graphics, 24(3), 965–972.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Grant 29 14-1. Thomas Pock and Christoph Vogel acknowledge support from the ERC starting Grant 640156, ‘HOMOVIS’. We thank Daniel Schanz for kindly sharing their results on the 4th PIV Challenge and for providing experimental data in water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Lasinger.

Additional information

Communicated by Thomas Brox.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasinger, K., Vogel, C., Pock, T. et al. 3D Fluid Flow Estimation with Integrated Particle Reconstruction. Int J Comput Vis 128, 1012–1027 (2020). https://doi.org/10.1007/s11263-019-01261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-019-01261-6

Keywords

Navigation