Skip to main content
Log in

A periodic metallo-supramolecular polymer from a flexible building block: self-assembly and photocatalysis for organic dye degradation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A water-soluble metallo-supramolecular polymer MSP-f-6Np, which possesses a regular pore aperture of 1.4 nm, has been assembled from a structurally flexible naphthalene-appended [Ru(bipy)3]2+ complex and cucurbit[8]uril. As the first periodic metallo-supramolecular polymer formed by a flexible building block, MSP-f-6Np exhibits a hydrodynamic diameter of 122 and 164 nm at 0.1 and 2.0 mM of the monomer concentrations. Synchrotron small angle X-ray scattering experiments confirm that MSP-f-6Np possesses porosity periodicity in both the solution and solid states. Compared with a control, the new highly ordered porous system displays enhanced photocatalytic activity for the degradation of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fouquey C, Lehn JM, Levelut AM. Adv Mater, 1990, 2: 254–257

    CAS  Google Scholar 

  2. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Chem Rev, 2001, 101: 4071–4098

    CAS  PubMed  Google Scholar 

  3. Fox JD, Rowan SJ. Macromolecules, 2009, 42: 6823–6835

    CAS  Google Scholar 

  4. Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907–5921

    CAS  PubMed  Google Scholar 

  5. Appel EA, del Barrio J, Loh XJ, Scherman OA. Chem Soc Rev, 2012, 41: 6195–6214

    CAS  PubMed  Google Scholar 

  6. Wang Z, Liao S, Wang Y. Chin J Polym Sci, 2018, 36: 288–296

    CAS  Google Scholar 

  7. Wei P, Yan X, Huang F. Chem Soc Rev, 2015, 44: 815–832

    CAS  PubMed  Google Scholar 

  8. Hendrikse SIS, Wijnands SPW, Lafleur RPM, Pouderoijen MJ, Janssen HM, Dankers PYW, Meijer EW. Chem Commun, 2017, 53: 2279–2282

    CAS  Google Scholar 

  9. Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X. Chin Chem Lett, 2017, 28: 1167–1171

    CAS  Google Scholar 

  10. Lu Z, Tang L. Chem Res Chin Univ, 2018, 34: 849–856

    CAS  Google Scholar 

  11. Adhikari B, Lin X, Yamauchi M, Ouchi H, Aratsu K, Yagai S. Chem Commun, 2017, 53: 9663–9683

    CAS  Google Scholar 

  12. Tian W, Li X, Wang J. Chem Commun, 2017, 53: 2531–2542

    CAS  Google Scholar 

  13. Chen Y, Huang F, Li ZT, Liu Y. Sci China Chem, 2018, 61: 979–992

    CAS  Google Scholar 

  14. Feng W, Jin M, Yang K, Pei Y, Pei Z. Chem Commun, 2018, 54: 13626–13640

    CAS  Google Scholar 

  15. Chen Y, Sun S, Lu D, Shi Y, Yao Y. Chin Chem Lett, 2019, 30: 37–43

    CAS  Google Scholar 

  16. Mulder A, Huskens J, Reinhoudt DN. Org Biomol Chem, 2004, 2: 3409–3424

    CAS  PubMed  Google Scholar 

  17. Xu JF, Chen L, Zhang X. Chem Eur J, 2015, 21: 11938–11946

    CAS  PubMed  Google Scholar 

  18. Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362

    CAS  Google Scholar 

  19. Yang B, Zhang XD, Li J, Tian J, Wu YP, Yu FX, Wang R, Wang H, Zhang DW, Liu Y, Zhou L, Li ZT. CCS Chem, 2019, 1: 156–165

    Google Scholar 

  20. Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Natl Sci Rev, 2017, 4: 426–436

    CAS  Google Scholar 

  21. Wu YP, Yang B, Tian J, Yu SB, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2017, 53: 13367–13370

    CAS  Google Scholar 

  22. Waller PJ, Gándara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053–3063

    CAS  PubMed  Google Scholar 

  23. Cao L, Wang T, Wang C. Chin J Chem, 2018, 36: 754–764

    CAS  Google Scholar 

  24. Han Z, Shi W, Cheng P. Chin Chem Lett, 2018, 29: 819–822

    CAS  Google Scholar 

  25. Liu Y, Liu B, Zhou Q, Zhang T, Wu W. Chem Res Chin Univ, 2017, 33: 971–978

    CAS  Google Scholar 

  26. Yang T, Cui Y, Chen H, Li W. Acta Chim Sin, 2017, 75: 339–350

    CAS  Google Scholar 

  27. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    CAS  PubMed  Google Scholar 

  28. Yuan F, Tan J, Guo J. Sci China Chem, 2018, 61: 143–152

    Google Scholar 

  29. Wu MX, Yang YW. Chin Chem Lett, 2017, 28: 1135–1143

    CAS  Google Scholar 

  30. Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015–1022

    CAS  Google Scholar 

  31. Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Sci China Chem, 2018, 61: 830–835

    CAS  Google Scholar 

  33. Ko YH, Hwang I, Lee DW, Kim K. Isr J Chem, 2011, 51: 506–514

    CAS  Google Scholar 

  34. Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8: 1626–1632

    CAS  PubMed  Google Scholar 

  35. Yang X, Liu F, Zhao Z, Liang F, Zhang H, Liu S. Chin Chem Lett, 2018, 29: 1560–1566

    CAS  Google Scholar 

  36. Zou H, Liu J, Li Y, Li X, Wang X. Small, 2018, 14: 1802234

    Google Scholar 

  37. Winter A, Schubert US. Chem Soc Rev, 2016, 45: 5311–5357

    CAS  PubMed  Google Scholar 

  38. Hou Z, Dehaen W, Lyskawa J, Woisel P, Hoogenboom R. Chem Commun, 2017, 53: 8423–8426

    CAS  Google Scholar 

  39. Yin G, Chen L, Wang C, Yang H. Chin J Chem, 2018, 36: 134–138

    CAS  Google Scholar 

  40. Bentz KC, Cohen SM. Angew Chem Int Ed, 2018, 57: 14992–15001

    CAS  Google Scholar 

  41. Ding Z, Li H, Gao W, Zhang Y, Liu C, Zhu Y. Chin J Chem, 2017, 35: 447–456

    CAS  Google Scholar 

  42. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem Rev, 2012, 112: 3959–4015

    CAS  PubMed  Google Scholar 

  43. Liu H, Kan XN, Wu CY, Pan QY, Li ZB, Zhao YJ. Chin JPolym Sci, 2018, 36: 425–444

    CAS  Google Scholar 

  44. Beuerle F, Gole B. Angew Chem Int Ed, 2018, 57: 4850–4878

    CAS  Google Scholar 

  45. Huang Z, Yang L, Liu Y, Wang Z, Scherman OA, Zhang X. Angew Chem Int Ed, 2014, 53: 5351–5355

    CAS  Google Scholar 

  46. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K. Acc Chem Res, 2003, 36: 621–630

    CAS  PubMed  Google Scholar 

  47. Biedermann F, Nau WM, Schneider HJ. Angew Chem Int Ed, 2014, 53: 11158–11171

    CAS  Google Scholar 

  48. Montes-Navajas P, Corma A, Garcia H. ChemPhysChem, 2008, 9: 713–720

    CAS  PubMed  Google Scholar 

  49. Sun S, Li F, Liu F, Wang J, Peng X. Sci Rep, 2014, 4: 3570

    PubMed  PubMed Central  Google Scholar 

  50. Xu Z, Lian X, Li M, Zhang X, Wang Y, Tao Z, Zhang Q. Chem Res Chin Univ, 2017, 33: 736–741

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21432004, 21529201, 21890732). YL thanks the support by the Molecular Foundry, the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DE-AC02-05CH11231). Additional support by the National Institute of General Medical Sciences (NIGMS) project advanced light sources efficiently networking advanced beam line experiments (ALS-ENABLE) (P30 GM124169) and a High-End Instrumentation(S10OD018483). We are also grateful for Shanghai Synchrotron Radiation Facility for providing the beam time (beamlines BL16B1 and BL14B1). Solution SAXS data was collected at the Advanced Light Source (ALS), SIBYLS beamline on behalf of US DOE-BER, through the Integrated Diffraction Analysis Technologies (IDAT) program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faiz-Ur Rahman, Yi Liu or Zhan-Ting Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Liu, XB., Chao, JY. et al. A periodic metallo-supramolecular polymer from a flexible building block: self-assembly and photocatalysis for organic dye degradation. Sci. China Chem. 62, 1634–1638 (2019). https://doi.org/10.1007/s11426-019-9600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9600-2

Keywords

Navigation