Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging intersections between neuroscience and glioma biology

This article has been updated

Abstract

The establishment of neuronal and glial networks in the brain depends on the activities of neural progenitors, which are influenced by cell-intrinsic mechanisms, interactions with the local microenvironment and long-range signaling. Progress in neuroscience has helped identify key factors in CNS development. In parallel, studies in recent years have increased our understanding of molecular and cellular factors in the development and growth of primary brain tumors. To thrive, glioma cells exploit pathways that are active in normal CNS progenitor cells, as well as in normal neurotransmitter signaling. Furthermore, tumor cells of incurable gliomas integrate into communicating multicellular networks, where they are interconnected through neurite-like cellular protrusions. In this Review, we discuss evidence that CNS development, organization and function share a number of common features with glioma progression and malignancy. These include mechanisms used by cells to proliferate and migrate, interact with their microenvironment and integrate into multicellular networks. The emerging intersections between the fields of neuroscience and neuro-oncology considered in this review point to new research directions and novel therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A perivascular niche for neural and brain tumor stem-like cells.
Fig. 2: Neurotransmitter signaling in the neurogenic niche and in gliomas.
Fig. 3: Similarities between NPC migration and glioma cell invasion.
Fig. 4: Schematic summary of TM functions and molecular drivers.
Fig. 5: Multicellular networks and intercellular communication in the neurogenic niche and in brain tumors.

Similar content being viewed by others

Change history

  • 19 November 2019

    When this article was initially published online, the Editorial Summary was missing. It should read: “Malignant gliomas recapitulate steps in neurodevelopment to form organ-like structures. Jung et al. review how neuroscience can provide novel insights into glioma biology, and how these insights might be used for future therapeutic approaches.”

References

  1. Arora, R. S. et al. Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro-oncol. 11, 403–413 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Ostrom, Q. T. et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the united states in 2009-2013. Neuro-oncol. 18(suppl_5), v1–v75 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Jones, C., Perryman, L. & Hargrave, D. Paediatric and adult malignant glioma: close relatives or distant cousins? Nat. Rev. Clin. Oncol. 9, 400–413 (2012).

    CAS  PubMed  Google Scholar 

  4. Louis, D. N. et al. The2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    PubMed  Google Scholar 

  5. Weller, M. et al. Glioma. Nat. Rev. Dis. Primers 1, 15017 (2015).

    PubMed  Google Scholar 

  6. Filbin, M. & Monje, M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat. Med. 25, 367–376 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Laug, D., Glasgow, S. M. & Deneen, B. A glial blueprint for gliomagenesis. Nat. Rev. Neurosci. 19, 393–403 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim, D. A. & Alvarez-Buylla, A. The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018820 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    CAS  PubMed  Google Scholar 

  10. Sanai, N. et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478, 382–386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Bjornsson, C. S., Apostolopoulou, M., Tian, Y. & Temple, S. It takes a village: constructing the neurogenic niche. Dev. Cell 32, 435–446 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alvarez-Buylla, A., Kohwi, M., Nguyen, T. M. & Merkle, F. T. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb. Symp. Quant. Biol. 73, 357–365 (2008).

    CAS  PubMed  Google Scholar 

  14. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  15. Riquelme, P. A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Phil. Trans. R. Soc. Lond. B 363, 123–137 (2008).

    Google Scholar 

  16. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  17. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    CAS  PubMed  Google Scholar 

  18. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  19. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    CAS  PubMed  Google Scholar 

  20. Charles, N. & Holland, E. C. The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9, 3012–3021 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Doetsch, F., García-Verdugo, J. M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl Acad. Sci. USA 96, 11619–11624 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Daynac, M. et al. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res. 11, 516–528 (2013).

    CAS  PubMed  Google Scholar 

  23. Shankar, A. et al. Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo. Chin. J. Cancer 33, 148–158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, X., McDonald, J. T., Hlatky, L. & Enderling, H. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res. 73, 1481–1490 (2013).

    CAS  PubMed  Google Scholar 

  25. Larjavaara, S. et al. Incidence of gliomas by anatomic location. Neuro-oncol. 9, 319–325 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. Barami, K. et al. Relationship of gliomas to the ventricular walls. J. Clin. Neurosci. 16, 195–201 (2009).

    PubMed  Google Scholar 

  27. Siebzehnrubl, F. A., Reynolds, B. A., Vescovi, A., Steindler, D. A. & Deleyrolle, L. P. The origins of glioma: e pluribus unum? Glia 59, 1135–1147 (2011).

    CAS  PubMed  Google Scholar 

  28. Stiles, C. D. & Rowitch, D. H. Glioma stem cells: a midterm exam. Neuron 58, 832–846 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, J. H. et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560, 243–247 (2018).

    CAS  PubMed  Google Scholar 

  30. Platel, J. C., Stamboulian, S., Nguyen, I. & Bordey, A. Neurotransmitter signaling in postnatal neurogenesis: the first leg. Brain Res. Rev. 63, 60–71 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, L. et al. Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J. Neurosci. 23, 3278–3294 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Song, J. et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, X., Wang, Q., Haydar, T. F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8, 1179–1187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    CAS  PubMed  Google Scholar 

  35. Wang, D. D., Krueger, D. D. & Bordey, A. Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ. J. Neurophysiol. 90, 2291–2302 (2003).

    CAS  PubMed  Google Scholar 

  36. Fernando, R. N. et al. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc. Natl Acad. Sci. USA 108, 5837–5842 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alfonso, J., Le Magueresse, C., Zuccotti, A., Khodosevich, K. & Monyer, H. Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. Cell Stem Cell 10, 76–87 (2012).

    CAS  PubMed  Google Scholar 

  38. Dumitru, I., Neitz, A., Alfonso, J. & Monyer, H. Diazepam binding inhibitor promotes stem cell expansion controlling environment-dependent neurogenesis. Neuron 94, 125–137.e5 (2017).

    CAS  PubMed  Google Scholar 

  39. Labrakakis, C., Patt, S., Hartmann, J. & Kettenmann, H. Functional GABA(A) receptors on human glioma cells. Eur. J. Neurosci. 10, 231–238 (1998).

    CAS  PubMed  Google Scholar 

  40. Garzon-Muvdi, T. et al. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol. 10, e1001320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Blanchart, A. et al. Endogenous GABAA receptor activity suppresses glioma growth. Oncogene 36, 777–786 (2017).

    CAS  PubMed  Google Scholar 

  42. Alho, H., Kolmer, M., Harjuntausta, T. & Helén, P. Increased expression of diazepam binding inhibitor in human brain tumors. Cell Growth Differ. 6, 309–314 (1995).

    CAS  PubMed  Google Scholar 

  43. Smits, A. et al. GABA-A channel subunit expression in human glioma correlates with tumor histology and clinical outcome. PLoS One 7, e37041 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Duman, C. et al. Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab. 30, 274–289.e5 (2019).

    CAS  PubMed  Google Scholar 

  45. Jansson, L. C. & Åkerman, K. E. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J. Neural Transm. (Vienna) 121, 819–836 (2014).

    CAS  Google Scholar 

  46. Platel, J. C. et al. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65, 859–872 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brazel, C. Y., Nuñez, J. L., Yang, Z. & Levison, S. W. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131, 55–65 (2005).

    CAS  PubMed  Google Scholar 

  48. Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    CAS  PubMed  Google Scholar 

  49. Hollmann, M., Hartley, M. & Heinemann, S. Ca2+ permeability of KA-AMPA—gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991).

    CAS  PubMed  Google Scholar 

  50. Darcy, D. P. & Isaacson, J. S. Calcium-permeable AMPA receptors mediate glutamatergic signaling in neural precursor cells of the postnatal olfactory bulb. J. Neurophysiol. 103, 1431–1437 (2010).

    PubMed  Google Scholar 

  51. Gallo, V. et al. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci. 16, 2659–2670 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gudz, T. I., Komuro, H. & Macklin, W. B. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J. Neurosci. 26, 2458–2466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Whitney, N. P. et al. Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. FASEB J. 22, 2888–2900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiltgen, B. J. et al. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS One 5, e12818 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. de Groot, J. F., Piao, Y., Lu, L., Fuller, G. N. & Yung, W. K. Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J. Neurooncol. 88, 121–133 (2008).

    PubMed  Google Scholar 

  56. Ishiuchi, S. et al. Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 8, 971–978 (2002).

    CAS  PubMed  Google Scholar 

  57. van Vuurden, D. G. et al. Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment. PLoS One 4, e5953 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Maas, S., Patt, S., Schrey, M. & Rich, A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc. Natl Acad. Sci. USA 98, 14687–14692 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rzeski, W., Turski, L. & Ikonomidou, C. Glutamate antagonists limit tumor growth. Proc. Natl Acad. Sci. USA 98, 6372–6377 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Colman, H. et al. A multigene predictor of outcome in glioblastoma. Neuro-oncol. 12, 49–57 (2010).

    CAS  PubMed  Google Scholar 

  61. Kawahara, Y., Ito, K., Sun, H., Kanazawa, I. & Kwak, S. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 18, 23–33 (2003).

    PubMed  Google Scholar 

  62. Arcella, A. et al. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro-oncol. 7, 236–245 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gillespie, S. & Monje, M. An active role for neurons in glioma progression: making sense of Scherer’s structures. Neuro-oncol. 20, 1292–1299 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye, Z. C. & Sontheimer, H. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4383–4391 (1999).

    CAS  PubMed  Google Scholar 

  65. Berg, D. A., Belnoue, L., Song, H. & Simon, A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 140, 2548–2561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nat. Chem. Biol. 3, 268–273 (2007).

    CAS  PubMed  Google Scholar 

  67. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    CAS  PubMed  Google Scholar 

  69. Paul, A., Chaker, Z. & Doetsch, F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356, 1383–1386 (2017).

    CAS  PubMed  Google Scholar 

  70. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  71. Lin, S. C. et al. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46, 773–785 (2005).

    CAS  PubMed  Google Scholar 

  72. Etxeberria, A., Mangin, J. M., Aguirre, A. & Gallo, V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci. 13, 287–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gautier, H. O. et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 6, 8518 (2015).

    CAS  PubMed  Google Scholar 

  74. Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fröhlich, N., Nagy, B., Hovhannisyan, A. & Kukley, M. Fate of neuron-glia synapses during proliferation and differentiation of NG2 cells. J. Anat. 219, 18–32 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Kougioumtzidou, E. et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife 6, e28080 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell 161, 803–816 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    CAS  PubMed  Google Scholar 

  80. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. de Groot, J. & Sontheimer, H. Glutamate and the biology of gliomas. Glia 59, 1181–1189 (2011).

    PubMed  Google Scholar 

  82. Parent, J. M., Valentin, V. V. & Lowenstein, D. H. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J. Neurosci. 22, 3174–3188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vecht, C. et al. Seizure response to perampanel in drug-resistant epilepsy with gliomas: early observations. J. Neurooncol. 133, 603–607 (2017).

    CAS  PubMed  Google Scholar 

  85. Robel, S., Berninger, B. & Götz, M. The stem cell potential of glia: lessons from reactive gliosis. Nat. Rev. Neurosci. 12, 88–104 (2011).

    CAS  PubMed  Google Scholar 

  86. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsai, H. H. et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351, 379–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jung, E. et al. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37, 6837–6850 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    CAS  PubMed  Google Scholar 

  90. Lowery, L. A. & Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332–343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Walker, T. L., Yasuda, T., Adams, D. J. & Bartlett, P. F. The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J. Neurosci. 27, 3734–3742 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boulanger, J. J. & Messier, C. Doublecortin in oligodendrocyte precursor cells in the adult mouse brain. Front. Neurosci. 11, 143 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Daou, M. C., Smith, T. W., Litofsky, N. S., Hsieh, C. C. & Ross, A. H. Doublecortin is preferentially expressed in invasive human brain tumors. Acta Neuropathol. 110, 472–480 (2005).

    CAS  PubMed  Google Scholar 

  94. Koizumi, H. et al. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat. Neurosci. 9, 779–786 (2006).

    CAS  PubMed  Google Scholar 

  95. Suzuki, M. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Exp. Physiol. 91, 141–147 (2006).

    CAS  PubMed  Google Scholar 

  96. Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cao, X. L. et al. Expression and purification of mouse Ttyh1 fragments as antigens to generate Ttyh1-specific monoclonal antibodies. Protein Expr. Purif. 130, 81–89 (2017).

    CAS  PubMed  Google Scholar 

  98. Wiernasz, E. et al. Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus. Neurochem. Res. 39, 2516–2526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat. Neurosci. 10, 970–979 (2007).

    CAS  PubMed  Google Scholar 

  100. Habela, C. W., Ernest, N. J., Swindall, A. F. & Sontheimer, H. Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J. Neurophysiol. 101, 750–757 (2009).

    CAS  PubMed  Google Scholar 

  101. Sahm, F. et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch. Neurol. 69, 523–526 (2012).

    PubMed  Google Scholar 

  102. Le Magueresse, C. et al. Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb. Cortex 22, 2285–2296 (2012).

    PubMed  Google Scholar 

  103. Winkler, F. et al. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57, 1306–1315 (2009).

    PubMed  Google Scholar 

  104. Griveau, A. et al. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33, 874–889.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Farin, A. et al. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53, 799–808 (2006).

    PubMed  Google Scholar 

  106. Qin, E. Y. et al. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 170, 845–859.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  PubMed  Google Scholar 

  108. Guerrero-Cazares, H. et al. Brief report: Robo1 regulates the migration of human subventricular zone neural progenitor cells during development. Stem Cells 35, 1860–1865 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yiin, J. J. et al. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro-oncol. 11, 779–789 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Giese, A., Bjerkvig, R., Berens, M. E. & Westphal, M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624–1636 (2003).

    CAS  PubMed  Google Scholar 

  111. Campbell, S. L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23–36 (2015).

    PubMed  Google Scholar 

  112. Winkler, F. & Wick, W. Harmful networks in the brain and beyond. Science 359, 1100–1101 (2018).

    CAS  PubMed  Google Scholar 

  113. Osswald, M., Solecki, G., Wick, W. & Winkler, F. A malignant cellular network in gliomas: potential clinical implications. Neuro-oncol. 18, 479–485 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Devoto, S. H. Neuronal growth cone migration. Experientia 46, 916–922 (1990).

    CAS  PubMed  Google Scholar 

  115. Marín, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2, a001834 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Skene, J. H. et al. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233, 783–786 (1986).

    CAS  PubMed  Google Scholar 

  117. Aigner, L. & Caroni, P. Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J. Cell Biol. 128, 647–660 (1995).

    CAS  PubMed  Google Scholar 

  118. Haag, D. et al. Nos2 inactivation promotes the development of medulloblastoma in Ptch1(+/-) mice by deregulation of Gap43-dependent granule cell precursor migration. PLoS Genet. 8, e1002572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Aigner, L. et al. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269–278 (1995).

    CAS  PubMed  Google Scholar 

  120. Zuber, M. X., Goodman, D. W., Karns, L. R. & Fishman, M. C. The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193–1195 (1989).

    CAS  PubMed  Google Scholar 

  121. Stefaniuk, M., Swiech, L., Dzwonek, J. & Lukasiuk, K. Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. J. Neurochem. 115, 1183–1194 (2010).

    CAS  PubMed  Google Scholar 

  122. Mohiuddin, L., Fernandez, K., Tomlinson, D. R. & Fernyhough, P. Nerve growth factor and neurotrophin-3 enhance neurite outgrowth and up-regulate the levels of messenger RNA for growth-associated protein GAP-43 and T alpha 1 alpha-tubulin in cultured adult rat sensory neurones. Neurosci. Lett. 185, 20–23 (1995).

    CAS  PubMed  Google Scholar 

  123. Benowitz, L. I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91 (1997).

    CAS  PubMed  Google Scholar 

  124. Peinado, A. Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections. J. Neurophysiol. 85, 620–629 (2001).

    CAS  PubMed  Google Scholar 

  125. Scemes, E. & Giaume, C. Astrocyte calcium waves: what they are and what they do. Glia 54, 716–725 (2006).

    PubMed  PubMed Central  Google Scholar 

  126. Leybaert, L. & Sanderson, M. J. Intercellular Ca(2+) waves: mechanisms and function. Physiol. Rev. 92, 1359–1392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N. & Ikegaya, Y. Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31, 2607–2614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kraft, A. et al. Astrocytic calcium waves signal brain injury to neural stem and progenitor cells. Stem Cell Rep. 8, 701–714 (2017).

    CAS  Google Scholar 

  129. Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  130. Lacar, B., Young, S. Z., Platel, J. C. & Bordey, A. Gap junction-mediated calcium waves define communication networks among murine postnatal neural progenitor cells. Eur. J. Neurosci. 34, 1895–1905 (2011).

    PubMed  PubMed Central  Google Scholar 

  131. Ravella, A., Ringstedt, T., Brion, J. P., Pandolfo, M. & Herlenius, E. Adult neural precursor cells form connexin-dependent networks that improve their survival. Neuroreport 26, 928–936 (2015).

    CAS  PubMed  Google Scholar 

  132. Malmersjö, S. et al. Neural progenitors organize in small-world networks to promote cell proliferation. Proc. Natl Acad. Sci. USA 110, E1524–E1532 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Malmersjö, S., Rebellato, P., Smedler, E. & Uhlén, P. Small-world networks of spontaneous Ca(2+) activity. Commun. Integr. Biol. 6, e24788 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Murphy, S. F. et al. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76, 139–149 (2016).

    CAS  PubMed  Google Scholar 

  135. Wang, J. et al. Targeting different domains of gap junction protein to control malignant glioma. Neuro-oncol. 20, 885–896 (2018).

    CAS  PubMed  Google Scholar 

  136. Weil, S. et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro-oncol. 19, 1316–1326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Le, H. T. et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem. 289, 1345–1354 (2014).

    CAS  PubMed  Google Scholar 

  138. Rustom, A. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol. 6, 160057 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Ariazi, J. et al. Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front. Mol. Neurosci. 10, 333 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Wesseling, P., van den Bent, M. & Perry, A. Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol. 129, 809–827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  142. Wang, X., Mao, X., Xie, L., Greenberg, D. A. & Jin, K. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J. Cereb. Blood Flow Metab. 29, 1644–1654 (2009).

    PubMed  Google Scholar 

  143. Goings, G. E., Sahni, V. & Szele, F. G. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res. 996, 213–226 (2004).

    CAS  PubMed  Google Scholar 

  144. Kojima, T. et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28, 545–554 (2010).

    PubMed  Google Scholar 

  145. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    CAS  PubMed  Google Scholar 

  146. Kreuzberg, M. et al. Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp. Neurol. 226, 90–99 (2010).

    CAS  PubMed  Google Scholar 

  147. Inta, D. & Gass, P. Is forebrain neurogenesis a potential repair mechanism after stroke? J. Cereb. Blood Flow Metab. 35, 1220–1221 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Huttner, H. B. et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat. Neurosci. 17, 801–803 (2014).

    CAS  PubMed  Google Scholar 

  149. Alieva, M. et al. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Sci. Rep. 7, 7529 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Chen, W. et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med. Oncol. 32, 43 (2015).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.J., J.A., M.O., W.W., H.M., and F.W. wrote the manuscript. E.J. created the figures. J.A. acquired the immunofluorescence image of the SVZ. E.J. acquired the two-photon microscopy image of the glioma cells in vivo.

Corresponding author

Correspondence to Frank Winkler.

Ethics declarations

Competing interests

E.J., F.W., and W.W. report the patent (WO2017020982A1) “Agents for use in the treatment of glioma.” F.W. is co-founder of DC Europa Ltd (a company trading under the name Divide & Conquer), which is developing new medicines for the treatment of glioma. Divide & Conquer also provides research funding to F.W.’s lab under a research collaboration agreement.

Additional information

Peer review information Nature Neuroscience thanks Benjamin Deneen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, E., Alfonso, J., Osswald, M. et al. Emerging intersections between neuroscience and glioma biology. Nat Neurosci 22, 1951–1960 (2019). https://doi.org/10.1038/s41593-019-0540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0540-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer