Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells in autoimmune and neurodegenerative central nervous system diseases

A Publisher Correction to this article was published on 26 November 2019

Abstract

B cells are essential components of the adaptive immune system and have important roles in the pathogenesis of several central nervous system (CNS) diseases. Besides producing antibodies, B cells perform other functions, including antigen presentation to T cells, production of proinflammatory cytokines and secretion of anti-inflammatory cytokines that limit immune responses. B cells can contribute to CNS disease either through their actions in the periphery (meaning that they have an ‘outside-in’ effect on CNS immunopathology) or following their compartmentalization within the CNS. The success of B cell-depleting therapy in patients with multiple sclerosis and CNS diseases with an autoantibody component, such as neuromyelitis optica spectrum disorder and autoimmune encephalitides, has underscored the role of B cells in both cellular and humoral-mediated CNS conditions. Emerging evidence suggests B cells also contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer disease and Parkinson disease. Advancing our understanding of the role of B cells in neuroinflammatory and neurodegenerative diseases could lead to novel therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B cell lineages and functions.
Fig. 2: B cells in the immunopathogenesis of multiple sclerosis (MS).
Fig. 3: B cell-mediated pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease.
Fig. 4: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis.
Fig. 5: Potential roles for B cells in neurodegenerative disorders.

Similar content being viewed by others

References

  1. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Invest. 127, 3210–3219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anthony, I. C., Crawford, D. H. & Bell, J. E. B lymphocytes in the normal brain: contrasts with HIV-associated lymphoid infiltrates and lymphomas. Brain 126, 1058–1067 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kowarik, M. C. et al. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J. Neurol. 261, 130–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141, 2066–2082 (2018). This study provides in-depth immunohistochemical characterization of different lymphocyte subsets within MS lesions and in other neurological conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prinz, M. & Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 20, 136–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Seifert, M. & Küppers, R. Human memory B cells. Leukemia 30, 2283–2292 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Thaler, F. S. et al. Abundant glutamic acid decarboxylase (GAD)-reactive B cells in GAD-antibody-associated neurological disorders. Ann. Neurol. 85, 448–454 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Constant, S., Schweitzer, N., West, J., Ranney, P. & Bottomly, K. B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J. Immunol. 155, 3734–3741 (1995).

    CAS  PubMed  Google Scholar 

  13. Weber, M. S. et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann. Neurol. 68, 369–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris, D. P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1, 475–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans, C. et al. Incidence and prevalence of multiple sclerosis in the Americas: a systematic review. Neuroepidemiology 40, 195–210 (2013).

    Article  PubMed  Google Scholar 

  19. Wallin, M. T. et al. The prevalence of MS in the United States. Neurology 92, e1029–e1040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tremlett, H. & Devonshire, V. Natural history of secondary-progressive multiple sclerosis. Mult. Scler. 14, 314–324 (2008).

    Article  PubMed  Google Scholar 

  21. The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  CAS  Google Scholar 

  22. Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra74 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Zamvil, S. S. et al. Encephalitogenic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J. Exp. Med. 162, 2107–2124 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, J. C. A. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996). This study demonstrates that B cells are not required in myelin-induced EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hjelmström, P., Juedes, A. E., Fjell, J. & Ruddle, N. H. Cutting edge: B cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J. Immunol. 161, 4480–4483 (1998).

    PubMed  Google Scholar 

  28. Molnarfi, N. et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 210, 2921–2937 (2013). This study demonstrates that the antigen-presenting capacity of myelin-specific B cells is required for the induction of B cell-dependent EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yahr, B. M. D., Goldensohn, S. S. & Kabat, E. A. Further studies on the gamma globulin content of cerebrospinal fluid in multiple sclerosis and other neurological diseases. Ann. N. Y. Acad. Sci. 68, 613–624 (1954).

    Article  Google Scholar 

  30. Dobson, R., Ramagopalan, S., Davis, A. & Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 84, 909–914 (2013).

    Article  PubMed  Google Scholar 

  31. Obermeier, B. et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat. Med. 14, 688–693 (2008). This study confirms that CSF-infiltrating B cells are the source of antibodies in the oligoclonal bands detected in patients with MS.

    Article  CAS  PubMed  Google Scholar 

  32. Eggers, E. L. et al. Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2, 1–16 (2017).

    Article  Google Scholar 

  33. Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lucchinetti, C. F. et al. Heterogenity of multiple sclerosis lesions: implication for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004). This is the first study to report B cell aggregates in lymphoid-like follicles in the meninges of patients with SPMS.

    Article  PubMed  Google Scholar 

  36. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  37. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Article  PubMed  Google Scholar 

  38. Lehmann-Horn, K., Wang, S., Sagan, S. A., Zamvil, S. S. & von Büdingen, H.-C. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1, e87234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLOS Med. 6, 0059–0075 (2009).

    Article  Google Scholar 

  40. Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B-cells within the target tissues of an autoimmune disease. J. Clin. Invest. 102, 938–946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lucchinetti, C. F. C. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    Article  PubMed  Google Scholar 

  43. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meinl, E., Krumbholz, M. & Hohlfeld, R. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 59, 880–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Meinl, E., Krumbholz, M., Derfuss, T., Junker, A. & Hohlfeld, R. Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J. Neurol. Sci. 274, 42–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004). This study demonstrates that B cell growth factors are produced in the CNS of patients with MS.

    Article  CAS  PubMed  Google Scholar 

  47. Krumbholz, M. et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 201, 195–200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).

    Article  PubMed  Google Scholar 

  49. Kowarik, M. C. et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J. Neuroinflammation 9, 93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alvarez, E. et al. Predicting optimal response to B-cell depletion with rituximab in multiple sclerosis using CXCL13 index, magnetic resonance imaging and clinical measures. Mult. Scler. J. Exp. Transl. Clin. 1, 205521731562380 (2015).

    Google Scholar 

  51. Xiao, B. G., Linington, C. & Link, H. Antibodies to myelin-oligodendrocyte glycoprotein in cerebrospinal fluid from patients with multiple sclerosis and controls. J. Neuroimmunol. 31, 91–96 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Warren, K. G., Catz, I., Johnson, E. & Mielke, B. Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. Ann. Neurol. 35, 280–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Genain, C. P., Cannella, B., Hauser, S. L. & Raine, C. S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. O’Connor, K. C. et al. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol. 175, 1974–1982 (2005). This study demonstrates that anti-MOG antibodies are present in the blood of a subset of patients with acute demyelinating encephalomyelitis.

    Article  PubMed  Google Scholar 

  55. Quintana, F. J. et al. Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78, 532–539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villar et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids. J. Clin. Invest. 115, 187–194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berger, T. et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med. 349, 139–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lalive, P. H. et al. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 2280–2285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, D. et al. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 19057–19062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quintana, F. J. et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl Acad. Sci. USA 105, 18889–18894 (2008). This study suggests that a diverse array of antibodies against multiple CNS autoantigens are found in distinct subtypes of MS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Owens, G. P. et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann. Neurol. 65, 639–649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haase, C. G. et al. The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J. Neuroimmunol. 114, 220–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Kuhle, J. et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N. Engl. J. Med. 356, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Pelayo, R. et al. Antimyelin antibodies with no progression to multiple sclerosis. N. Engl. J. Med. 356, 426–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. O’Connor, K. C. et al. Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat. Med. 13, 211–217 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ketelslegers, I. A. et al. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult. Scler. 21, 1513–1520 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Srivastava, R. et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 367, 115–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kraus, V. et al. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology 82, 470–473 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Schirmer, L. et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann. Neurol. 75, 810–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Brickshawana, A. et al. Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study. Lancet Neurol. 13, 795–806 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nerrant, E. et al. Lack of confirmation of anti-inward rectifying potassium channel 4.1 antibodies as reliable markers of multiple sclerosis. Mult. Scler. 20, 1699–1703 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Pröbstel, A. K. et al. Multiple sclerosis and antibodies against KIR4.1. N. Engl. J. Med. 374, 1496–1498 (2016).

    Article  PubMed  Google Scholar 

  73. Chastre, A., Hafler, D. A. & O’Connor, K. C. Evaluation of KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 374, 1495–1496 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mathey, E. K. et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Derfuss, T. et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl Acad. Sci. USA 106, 8302–8307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blauth, K. et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. 130, 765–781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rivas, J. R. et al. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol. 133, 43–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, Y. et al. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol. Commun. 5, 25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reiber, H., Ungefehr, S. & Jacobi, C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult. Scler. 4, 111–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Jarius, S. et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J. Neurol. 264, 453–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Brändle, S. M. et al. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc. Natl Acad. Sci. USA 113, 7864–7869 (2016). This study demonstrates that at least some antibodies in CSF oligoclonal bands bind to ubiquitous self-antigens.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Winger, R. C. & Zamvil, S. S. Antibodies in multiple sclerosis oligoclonal bands target debris. Proc. Natl Acad. Sci. USA 113, 7696–7698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grabar, P. ‘Self’ and ‘not-self’ in immunology. Lancet 1, 1320–1322 (1974).

    Article  CAS  PubMed  Google Scholar 

  84. Lisak, R. P. et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246, 85–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Owens, G. P. et al. Restricted use of V(H)4 germline segments in an acute multiple sclerosis brain. Ann. Neurol. 43, 236–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Qin, Y. et al. Clonal expansion and somatic mutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest. 102, 1045–1050 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baranzini, S. et al. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J. Immunol. 163, 5133–5144 (1999).

    CAS  PubMed  Google Scholar 

  89. Colombo, M. et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 164, 2782–2789 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Owens, G. P. et al. Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J. Immunol. 171, 2725–2733 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Colombo, M. et al. Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur. J. Immunol. 33, 3433–3438 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Ritchie, A. M. et al. Comparative analysis of the CD19+ and CD138+ cell antibody repertoires in the cerebrospinal fluid of patients with multiple sclerosis. J. Immunol. 173, 649–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Owens, G. P. et al. VH4 gene segments dominate the intrathecal humoral immune response in multiple sclerosis. J. Immunol. 179, 6343–6351 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Harp, C. et al. Cerebrospinal fluid B cells from multiple sclerosis patients are subject to normal germinal center selection. J. Neuroimmunol. 183, 189–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Bankoti, J. et al. In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann. Neurol. 75, 266–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beltrán, E. et al. Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain 137, 2703–2714 (2014).

    Article  PubMed  Google Scholar 

  97. Lovato, L. et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 134, 534–541 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Obermeier, B. et al. Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J. Neuroimmunol. 233, 245–248 (2011). This study identifies clonally related but distinct B cell clonotypes in the CSF and blood of patients with MS, suggesting that bidirectional exchange occurs between these compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. von Büdingen, H.-C. et al. B cell exchange across the blood–brain barrier in multiple sclerosis. J. Clin. Invest. 122, 24–28 (2012).

    Google Scholar 

  100. Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl. Med. 6, 248ra106 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Stern, J. N. H. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Greenfield, A. L. et al. Longitudinally persistent cerebrospinal fluid B cells can resist treatment in multiple sclerosis. JCI Insight 4, 126599 (2019).

    PubMed  Google Scholar 

  103. Genç, K., Dona, D. L. & Reder, A. T. Increased CD80+ B cells in active multiple sclerosis and reversal by interferon β-1b therapy. J. Clin. Invest. 99, 2664–2671 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Comabella, M. et al. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes. Hum. Mol. Genet. 25, 308–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Fraussen, J. et al. B cells of multiple sclerosis patients induce autoreactive proinflammatory T cell responses. Clin. Immunol. 173, 1–9 (2016).

    Article  CAS  Google Scholar 

  106. Madireddy, L. et al. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 10, 2236 (2019).

    Article  CAS  Google Scholar 

  107. Bettelli, E., Baeten, D., Jäger, A., Sobel, R. A. & Kuchroo, V. K. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest. 116, 2393–2402 (2006). This study demonstrates that mice genetically engineered to express T cells and B cells both targeting MOG develop a spontaneous demyelinating syndrome resembling anti-MOG opticospinal disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishnamoorthy, G., Lassmann, H., Wekerle, H. & Holz, A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J. Clin. Invest. 116, 2385–2392 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Parker Harp, C. R. et al. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. J. Immunol. 194, 5077–5084 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Parker Harp, C. R. et al. B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis. PLOS ONE 13, 1–20 (2018).

    Article  CAS  Google Scholar 

  111. Harp, C. T. et al. Memory B cells from a subset of treatment-naive relapsing–remitting multiple sclerosis patients elicit CD4+ T-cell proliferation and IFN-γ production in response to myelin basic protein and myelin oligodendrocyte glycoprotein. Eur. J. Immunol. 40, 2942–2956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Häusler, D. et al. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc. Natl Acad. Sci. USA 115, 9773–9778 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Craft, J. E. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 8, 337–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fan, X. et al. Circulating CCR7+ICOS+ memory T follicular helper cells in patients with multiple sclerosis. PLOS ONE 10, 1–14 (2015).

    Google Scholar 

  117. Cross, A. H., Stark, J. L., Lauber, J., Ramsbottom, M. J. & Lyons, J. A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180, 63–70 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martin, M. et al. Depletion of B lymphocytes from cerebral perivascular spaces by rituximab. Arch. Neurol. 66, 1016–1021 (2009).

    Google Scholar 

  119. Roll, P., Palanichamy, A., Kneitz, C., Dorner, T. & Tony, H. P. Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum. 54, 2377–2386 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Palanichamy, A. et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J. Immunol. 193, 580–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Hauser, S. et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008). This phase II clinical trial demonstrates that B cell depletion has a robust therapeutic effect in patients with RRMS.

    Article  CAS  PubMed  Google Scholar 

  123. Hauser, S. L. et al. Ocrelizumab versus interferon β1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Bar-Or, A. et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann. Neurol. 67, 452–461 (2010). This study reveals that anti-CD20 antibody treatment in MS reduces proinflammatory B cell and T cell levels in peripheral blood.

    Article  CAS  PubMed  Google Scholar 

  125. Barr, T. A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, R. et al. Proinflammatory GM-CSF–producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    PubMed  Google Scholar 

  127. Guerrier, T. et al. Proinflammatory B-cell profile in the early phases of MS predicts an active disease. Neurol. Neuroimmunol. NeuroInflamm. 5, 1–7 (2018).

    Article  Google Scholar 

  128. Lehmann-Horn, K. et al. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J. Neuroinflamm. 8, 146 (2011).

    Article  CAS  Google Scholar 

  129. Mackay, F. & Browning, J. L. BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2, 465–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Sergott, R. C. et al. ATON: results from a phase II randomized trial of the B-cell-targeting agent atacicept in patients with optic neuritis. J. Neurol. Sci. 351, 174–178 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, M., Sun, L., Wang, S. & Ko, K. Cutting edge: novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184, 3321–3325 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. The CAMMS223 Trial Investigators. Alemtuzumab versus interferon β1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  Google Scholar 

  135. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Rudick, R. A. et al. Natalizumab plus interferon β1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cohen, J. a et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009). This pivotal clinical trial demonstrates that B cell depletion is beneficial in patients with PPMS — the first clinical trial of a therapy for progressive MS to achieve its primary end point.

    Article  CAS  PubMed  Google Scholar 

  140. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Petereit, H. F. & Rubbert-Roth, A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult. Scler. 15, 189–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. von Büdingen, H. C. et al. Onset of secondary progressive MS after long-term rituximab therapy — a case report. Ann. Clin. Transl. Neurol. 4, 46–52 (2016).

    Article  Google Scholar 

  143. Lehmann-Horn, K. et al. Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity. Ann. Clin. Transl. Neurol. 1, 490–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Svenningsson, A. et al. Rapid depletion of B lymphocytes by ultra-low-dose rituximab delivered intrathecally. Neurol. Neuroimmunol. Neuroinflamm. 2, e79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Komori, M. et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. 3, 166–179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Topping, J. et al. The effects of intrathecal rituximab on biomarkers in multiple sclerosis. Mult. Scler. Relat. Disord. 6, 49–53 (2016).

    Article  PubMed  Google Scholar 

  147. Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Devic, E. Myélite aiguë dorso-lombaire avec névrite optique. Autopsie [French]. In Congrès Français de Médecine (Prem. Session; Lyon, 1894; procès-verbaux, mémoires et discussions; publiés par M. le Dr L. Bard) 434–443 (Asselin et Houzeau & Lyon, Louis Savy, 1895).

  149. Jarius, S., Wuthenow, A. B. & Wildemann, B. The first Japanese report on neuromyelitis optica rediscovered: acute bilateral blindness, tetraparesis and respiratory insufficiency in a 35-year-old man (1891). J. Neurol. Sci. 395, 121–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Wingerchuk, D. M., Hogancamp, W. F., O’Brien, P. C. & Weinshenker, B. G. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53, 1107–1107 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica. Lancet 364, 2106–2112 (2004). This study demonstrates that an astrocyte-specific autoantibody (NMO-IgG) is found uniquely in NMO.

    Article  CAS  PubMed  Google Scholar 

  152. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pandit, L. et al. Demographic and clinical features of neuromyelitis optica: a review. Mult. Scler. 21, 845–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Flanagan, E. P. et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann. Neurol. 79, 775–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Miyamoto, K. et al. Nationwide epidemiological study of neuromyelitis optica in Japan. J. Neurol. Neurosurg. Psychiatry 89, 667–668 (2018).

    Article  PubMed  Google Scholar 

  157. Majed, M., Fryer, J. P., McKeon, A., Lennon, V. A. & Pittock, S. J. Clinical utility of testing for AQP4-IgG in CSF: guidance for physicians. Neurol. Neuroimmunol. NeuroInflamm. 3, 1–6 (2016).

    Article  Google Scholar 

  158. Kowarik, M. C. et al. CNS aquaporin-4-specific B cells connect with multiple B-cell compartments in neuromyelitis optica spectrum disorder. Ann. Clin. Transl. Neurol. 4, 369–380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cotzomi, E. et al. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 142, 1598–1615 (2019). Results from this study indicate that defects in central and peripheral tolerance lead to the expansion of AQP4-specific B cells in NMO.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Misu, T. et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 130, 1224–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Lucchinetti, C. F. C. et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125, 1450–1461 (2002). This study reveals that NMO lesions have unique pathological characteristics, including the presence of activated complement, neutrophils and eosinophils.

    Article  PubMed  Google Scholar 

  162. Matsuoka, T. et al. Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese. Brain 130, 1206–1223 (2007).

    Article  PubMed  Google Scholar 

  163. Matsushita, T. et al. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLOS ONE 8, 2–9 (2013).

    CAS  Google Scholar 

  164. Herges, K. et al. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Mult. Scler. 18, 398–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Varrin-Doyer, M. et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a TH17 bias and recognize Clostridium ABC transporter. Ann. Neurol. 72, 53–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shimizu, J. et al. IFNβ-1b may severely exacerbate Japanese optic-spinal MS in neuromyelitis optica spectrum. Neurology 75, 1423–1427 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Kim, S. H., Kim, W., Li, X. F., Jung, I. J. & Kim, H. J. Does interferon β treatment exacerbate neuromyelitis optica spectrum disorder? Mult. Scler. 18, 1480–1483 (2012).

    Article  PubMed  CAS  Google Scholar 

  168. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaneko, K. et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. J. Neurol. Neurosurg. Psychiatry 89, 927–936 (2018).

    Article  PubMed  Google Scholar 

  170. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 105, 18460–18465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Murakami, M., Kamimura, D. & Hirano, T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity 50, 812–831 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Ringelstein, M. et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 72, 756–763 (2015).

    Article  PubMed  Google Scholar 

  176. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Ratelade, J., Bennett, J. L. & Verkman, A. S. Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J. Biol. Chem. 286, 45156–45164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Mader, S. et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J. Neuroinflammation 8, 1–14 (2011).

    Article  CAS  Google Scholar 

  180. Bradl, M. et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann. Neurol. 66, 630–643 (2009). This study demonstrates the pathogenicity of polyclonal AQP4-specific antibodies derived from patients with NMO in an animal model of T cell-dependent demyelination.

    Article  CAS  PubMed  Google Scholar 

  181. Hillebrand, S. et al. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol. 137, 467–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Ratelade, J. et al. Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol. 123, 861–872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Papadopoulos, M. C. & Verkman, A. S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11, 535–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009). This study demonstrates that recombinant AQP4-specific antibodies derived from patients with NMO were pathogenic in an animal model of T cell-dependent demyelination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yao, X. & Verkman, A. S. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 5, 57 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Soltys, J. et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J. Clin. Invest. 129, 2000–2013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Cree, B. A. C., Spencer, C. M., Varrin-Doyer, M., Baranzini, S. E. & Zamvil, S. S. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann. Neurol. 80, 443–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gong, J. et al. Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: a Chinese pilot study. Mult. Scler. 25, 1316–1325 (2018).

    Article  PubMed  CAS  Google Scholar 

  189. Zamvil, S. S., Spencer, C. M., Baranzini, S. E. & Cree, B. A. C. The gut microbiome in neuromyelitis optica. Neurotherapeutics 15, 92–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Kitley, J. et al. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135, 1834–1849 (2012).

    Article  PubMed  Google Scholar 

  191. Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Treatment of neuromyelitis optica: State-of-the-art and emerging therapies. Nat. Rev. Neurol. 10, 493–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kleiter, I., Hellwig, K., Berthele, A. & Al, E. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch. Neurol. 69, 239–245 (2012).

    Article  PubMed  Google Scholar 

  193. Min, J. H., Kim, B. J. & Lee, K. H. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult. Scler. 18, 113–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013). This clinical trial demonstrates that a monoclonal antibody against complement terminal pathway components is highly effective in preventing relapse of NMO.

    Article  CAS  PubMed  Google Scholar 

  195. Pittock, S. J. et al. Eculizumab in aquaporin-4–positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Jacob, A. et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65, 1443–1448 (2008).

    Article  PubMed  Google Scholar 

  197. Kim, S., Huh, S., Lee, S., Joung, A. & Kim, H. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    Article  PubMed  Google Scholar 

  198. Cree, B. et al. A double-masked, placebo-controlled study with open-label period to evaluate the efficacy and safety of inebilizumab in adult subjects with neuromyelitis optica spectrum disorders — top line efficacy and safety results (Plen02.001). Neurology 92, Plen02.001 (2019).

    Google Scholar 

  199. Jarius, S. et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Pellkofer, H. L. et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 76, 1310–1315 (2011). This study demonstrates that anti-AQP4 antibody production is derived from naive and memory B cells rather than plasmablasts and plasma cells.

    Article  CAS  PubMed  Google Scholar 

  201. Wilson, R. et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain 141, 1063–1074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflamm. 9, 1–17 (2012).

    Article  Google Scholar 

  203. Zamvil, S. S. & Slavin, A. J. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol. Neuroimmunol. NeuroInflamm. 2, 1–7 (2015).

    Article  Google Scholar 

  204. Reindl, M. & Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol. 15, 89–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Pröbstel, A. K. et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology 77, 580–588 (2011).

    Article  PubMed  CAS  Google Scholar 

  206. Hennes, E. M. et al. Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome. Neurology 89, 900–908 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Spadaro, M. et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Pauli, F. Di & Berger, T. Myelin oligodendrocyte glycoprotein antibody-associated disorders: toward a new spectrum of inflammatory demyelinating CNS disorders? Front. Immunol. 9, 1–12 (2018). This study identifies anti-MOG antibodies in a subset of AQP4-seronegative patients with NMOSD.

    Article  CAS  Google Scholar 

  209. Kitley, J. et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 79, 1273–1277 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies a comparative study. JAMA Neurol. 71, 276–283 (2014).

    Article  PubMed  Google Scholar 

  211. Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ramanathan, S. et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol. Neuroimmunol. NeuroInflamm. 1, 1–12 (2014).

    Article  Google Scholar 

  213. Pröbstel, A. K. et al. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J. Neuroinflamm. 12, 1–7 (2015).

    Article  CAS  Google Scholar 

  214. Martinez-Hernandez, E. et al. Antibodies to aquaporin 4, myelin-oligodendrocyte glycoprotein, and the glycine receptor α1 subunit in patients with isolated optic neuritis. JAMA Neurol. 72, 187–193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Höftberger, R. et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult. Scler. 21, 866–874 (2015).

    Article  PubMed  CAS  Google Scholar 

  216. Hacohen, Y. et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol. Neuroimmunol. Neuroinflamm. 2, e81 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Jurynczyk, M. et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 140, 3128–3138 (2017).

    Article  PubMed  Google Scholar 

  218. Brilot, F. et al. Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann. Neurol. 66, 833–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Selter, R. C. et al. Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases. Neurology 74, 1711–1715 (2010).

    Article  CAS  PubMed  Google Scholar 

  220. Chalmoukou, K. et al. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol. Neuroimmunol. Neuroinflamm. 2, e131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ogawa, R. et al. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol. Neuroimmunol. Neuroinflamm. 4, e322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Fujimori, J. et al. Bilateral frontal cortex encephalitis and paraparesis in a patient with anti-MOG antibodies. J. Neurol. Neurosurg. Psychiatry 88, 534–536 (2017).

    Article  PubMed  Google Scholar 

  223. Hamid, S. H. M. et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein igg disease vs aquaporin 4 igg disease. JAMA Neurol. 75, 65–71 (2018).

    Article  PubMed  Google Scholar 

  224. Hacohen, Y. et al. ‘Leukodystrophy-like’ phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease. Dev. Med. Child Neurol. 60, 417–423 (2018).

    Article  PubMed  Google Scholar 

  225. Narayan, R. N., Wang, C., Sguigna, P., Husari, K. & Greenberg, B. Atypical Anti-MOG syndrome with aseptic meningoencephalitis and pseudotumor cerebri-like presentations. Mult. Scler. Relat. Disord. 27, 30–33 (2019).

    Article  PubMed  Google Scholar 

  226. Brunner, C., Lassmann, H., Waehneldt, T. V., Matthieu, J. M. & Linington, C. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase in the CNS of adult rats. J. Neurochem. 52, 296–304 (1989).

    Article  CAS  PubMed  Google Scholar 

  227. Lebar, R., Lubetzki, C., Vincent, C., Lombrail, P. & Boutry, J. M. The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane. Clin. Exp. Immunol. 66, 423–434 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Schluesener, H. J., Sobel, R. A., Linington, C. & Weiner, H. L. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol. 139, 4016–4021 (1987).

    CAS  PubMed  Google Scholar 

  229. Genain, C. P. et al. Antibody facilitation of multiple sclerosis like lesions in a nonhuman primate. J. Clin. Invest. 96, 2966–2974 (1995). This study demonstrates that anti-MOG antibodies can elicit MS-like lesions in a marmoset model of demyelination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Spadaro, M. et al. Histopathology and clinical course of MOG-antibody-associated encephalomyelitis. Ann. Clin. Transl. Neurol. 2, 295–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Di Pauli, F. et al. Fulminant demyelinating encephalomyelitis. Neurol. Neuroimmunol. Neuroinflamm. 2, e175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Weber, M. S., Derfuss, T., Metz, I. & Brück, W. Defining distinct features of anti-MOG antibody associated central nervous system demyelination. Ther. Adv. Neurol. Disord. 11, 1–15 (2018).

    Article  CAS  Google Scholar 

  233. Litzenburger, T. et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 188, 169–180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Peschl, P. et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J. Neuroinflamm. 14, 208 (2017).

    Article  CAS  Google Scholar 

  235. Saadoun, S. et al. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol. Commun. 2, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Spadaro, M. et al. Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Ann. Neurol. 84, 315–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Ramanathan, S., Dale, R. C. & Brilot, F. Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun. Rev. 15, 307–324 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflamm. 13, 280 (2016).

    Article  CAS  Google Scholar 

  239. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J. Neuroinflamm. 13, 279 (2016).

    Article  CAS  Google Scholar 

  240. Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).

    Article  PubMed  Google Scholar 

  241. Granerod, J. et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect. Dis. 10, 835–844 (2010).

    Article  PubMed  Google Scholar 

  242. Dubey, D. et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann. Neurol. 83, 166–177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Vitaliani, R. et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann. Neurol. 58, 594–604 (2005). This is the first report to identify the antigenic target in anti-NMDAR encephalitis and its association with ovarian teratoma.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dalmau, J. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7, 1091–1098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Prüss, H. et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann. Neurol. 72, 902–911 (2012). This study reveals that more than 25% of patients with HSV-1 encephalitis subsequently develop anti-NMDAR encephalitis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Armangue, T. et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 17, 760–772 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Hara, M. et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 90, e1386–e1394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Gresa-Arribas, N. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 13, 167–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  250. Tüzün, E. et al. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 118, 737 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Bien, C. G. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135, 1622–1638 (2012).

    Article  PubMed  Google Scholar 

  252. Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Mikasova, L. et al. Disrupted surface cross-talk between NMDA and ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135, 1606–1621 (2012).

    Article  PubMed  Google Scholar 

  254. Kreye, J. et al. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 139, 2641–2652 (2016).

    Article  PubMed  Google Scholar 

  255. Planagumà, J. et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 138, 94–109 (2015).

    Article  PubMed  Google Scholar 

  256. Malviya, M. et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann. Clin. Transl. Neurol. 4, 768–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Planagumà, J. et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann. Neurol. 80, 388–400 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Martinez-Hernandez, E. et al. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77, 589–593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Titulaer, M. J. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 12, 157–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Haussermann, P., Kuhn, W., Przuntek, H. & Muller, T. Integrity of the blood–cerebrospinal fluid barrier in early Parkinson’s disease. Neurosci. Lett. 300, 182–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  261. Jesse, S. et al. Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases. J. Neurol. 258, 1034–1041 (2011).

    Article  PubMed  Google Scholar 

  262. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  263. Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hollenbach, J. A. et al. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 7419–7424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Schröder, J. B. et al. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front. Neurol. 9, 1–7 (2018).

    Article  Google Scholar 

  269. Brochard, V. et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182–192 (2009). This study identifies the presence of IgG on substantia nigra neurons and Lewy bodies in patients with PD, which correlated with microglial activation.

    CAS  PubMed  Google Scholar 

  270. Orr, C. F., Rowe, D. B., Mizuno, Y., Mori, H. & Halliday, G. M. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128, 2665–2674 (2005).

    Article  PubMed  Google Scholar 

  271. Papachroni, K. K. et al. Autoantibodies to α-synuclein in inherited Parkinson’s disease. J. Neurochem. 101, 749–756 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gruden, M. A. et al. Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J. Neuroimmunol. 233, 221–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  273. Shalash, A. et al. Elevated serum α-synuclein autoantibodies in patients with Parkinson’s disease relative to Alzheimer’s disease and controls. Front. Neurol. 8, 720 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Besong-Agbo, D. et al. Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80, 169–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  275. Horvath, I., Iashchishyn, I. A., Forsgren, L. & Morozova-Roche, L. A. Immunochemical detection of α-synuclein autoantibodies in Parkinson’s disease: correlation between plasma and cerebrospinal fluid levels. ACS Chem. Neurosci. 8, 1170–1176 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Akhtar, R. S. et al. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J. Neurochem. 145, 489–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Benner, E. J. et al. Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLOS One 3, e1376 (2008). This study demonstrates that transfer of polyclonal IgG from patients with PD can lead to loss of midbrain dopaminergic neurons in a rat model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Chen, S. et al. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch. Neurol. 55, 1075–1080 (1998).

    Article  CAS  PubMed  Google Scholar 

  279. Bas, J. et al. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J. Neuroimmunol. 113, 146–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  280. Stevens, C. H. et al. Reduced T helper and B lymphocytes in Parkinson’s disease. J. Neuroimmunol. 252, 95–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  281. Kobo, H. et al. Down-regulation of B cell-related genes in peripheral blood leukocytes of Parkinson’s disease patients with and without GBA mutations. Mol. Genet. Metab. 117, 179–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Cook, D. A. et al. LRRK2 levels in immune cells are increased in Parkinson’s disease. NPJ Parkinsons Dis. 3, 11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kubo, M. et al. Leucine-rich repeat kinase 2 is a regulator of B cell function, affecting homeostasis, BCR signaling, IgA production, and TI antigen responses. J. Neuroimmunol. 292, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Jankovic, J. et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti–α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol. 75, 1206–1214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Steele, N. Z. R. et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case–control study. PLOS Med. 14, 1–25 (2017). This study suggests that the frequency of B cells producing antibodies against Aβ 42 was increased in patients with AD.

    Article  CAS  Google Scholar 

  286. Söllvander, S. et al. Increased number of plasma B cells producing autoantibodies against Aβ42 protofibrils in Alzheimer’s disease. J. Alzheimer’s Dis. 48, 63–72 (2015).

    Article  CAS  Google Scholar 

  287. Bulati, M. et al. Double negative (IgG+IgDCD27) B cells are increased in a cohort of moderate–severe Alzheimer’s disease patients and show a pro-inflammatory trafficking receptor phenotype. J. Alzheimers Dis. 44, 1241–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  288. Busse, M. et al. Alterations in the peripheral immune system in dementia. J. Alzheimers Dis. 58, 1303–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  289. Jiang, Q. et al. Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol. 54, 594–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  290. Readhead, B. et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99, 64–82 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Gaskin, F., Finley, J., Fang, Q., Xu, S. & Fu, S. M. Human antibodies reactive with β-amyloid protein in Alzheimer’s disease. J. Exp. Med. 177, 1181–1186 (1993).

    Article  CAS  PubMed  Google Scholar 

  292. Pascual, G. et al. Immunological memory to hyperphosphorylated tau in asymptomatic individuals. Acta Neuropathol. 133, 767–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Du, Y. et al. Reduced levels of amyloid β-peptide antibody in Alzheimer disease. Neurology 57, 801–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  294. Hyman, B. T. et al. Autoantibodies to amyloid-β and Alzheimer’s disease. Ann. Neurol. 49, 808–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  295. Weksler, M. E. et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol. 37, 943–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  296. Piazza, F. et al. Anti–amyloid β autoantibodies in cerebral amyloid angiopathy–related inflammation: implications for amyloid-modifying therapies. Ann. Neurol. 73, 449–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  297. Maftei, M. et al. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer’s disease patients. PLOS ONE 8, e68996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Wilcock, D. M. et al. Intracranially administered anti-Αβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci. 23, 3745–3751 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Relkin, N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J. Clin. Immunol. 34, 74–79 (2014).

    Article  CAS  Google Scholar 

  300. Sudduth, T. L., Greenstein, A. & Wilcock, D. M. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies. J. Neurosci. 33, 9684–9692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Relkin, N. R. et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 88, 1768–1775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  303. Ferrer, I., Rovira, M. B., Guerra, M. L. S., Rey, M. J. & Costa-Jussá, F. Neuropathology and pathogenesis of encephalitis following amyloid β immunization in Alzheimer’s disease. Brain Pathol. 14, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  304. Zota, V. et al. HLA-DR alleles in amyloid peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele. J. Immunol. 183, 3522–3530 (2009).

    Article  CAS  PubMed  Google Scholar 

  305. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  307. Honig, L. S. et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med. 378, 321–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  308. Larman, H. B. et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 29, 535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Lai, M. et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 9, 776–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Irani, S. R. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133, 2734–2748 (2010). This study identifies anti-LRG1 and anti-CASPR2 antibodies in a heterogeneous group of patients with limbic encephalitis and peripheral nerve hyperexcitability.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Lai, M. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 65, 424–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Lancaster, E. et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 9, 67–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  314. Sabater, L. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 13, 575–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Boronat, A. et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann. Neurol. 73, 120–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  316. Hutchinson, M. et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 71, 1291 LP–1292 LP (2008).

    Article  Google Scholar 

  317. McKeon, A. et al. Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol. 70, 44–50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Solimena, M. et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type i diabetes mellitus. N. Engl. J. Med. 318, 1012–1020 (1988).

    Article  CAS  PubMed  Google Scholar 

  319. Lancaster, E. et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 77, 1698–1701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.J.S. is supported by research grants from the US National Institutes of Health (1K08NS107619-01A1), the US National Multiple Sclerosis Society (TA-1903-33713) and the Race to Erase MS. A.-K.P. is supported by postdoctoral fellowships from the Swiss National Science Foundation (P2SKP3_164938/1 and P300PB_177927/1) and the US National Multiple Sclerosis Society (Kathleen C. Moore Fellowship, FG-1708-28871). S.S.Z. is supported by research grants from the US National Institutes of Health (1 RO1 NS092835-01, 1 R01 AI131624-01A1, 1 R21 NS108159-01 and 1 R21AI142186-01A1), the US National Multiple Sclerosis Society (1 RG1701-26628), the Weill Institute and the Maisin Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Scott S. Zamvil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks R. Hohlfield, J. Bennett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

B cell receptor

(BCR). A cell-surface immunoglobulin composed of two paired heavy (H) and light (L) chains. Each chain is generated by irreversible rearrangement and recombination of the B cell variable (V), diversity (D; heavy chain only) and junction (J) genes.

Germinal centre reaction

The formation of secondary lymphoid tissue, which is the site of B cell somatic hypermutation and isotype switching.

Immunoglobulin class switching

Also called ‘isotype class switching’ or ’class-switch recombination’, this process refers to recombination of the immunoglobulin gene constant (C) region to allow generation of IgG, IgA or IgE isotypes.

Antibody isotypes

Antibodies are of five different isotypes: IgM, IgD, IgG, IgA and IgE. IgM and IgD are co-expressed by naive B cells, whereas the other isotypes are expressed by antigen-experienced B cells. Isotype is determined by the constant (C) region of the immunoglobulin gene, which encodes the antibody Fc region and binds to Fc receptors on various immune effector cell types.

Somatic hypermutation

Insertion of point mutations into the immunoglobulin gene variable (V) region, which increases antibody diversity and allows the generation of antibodies with high affinity for antigen (affinity maturation).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, J.J., Pröbstel, AK. & Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 20, 728–745 (2019). https://doi.org/10.1038/s41583-019-0233-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0233-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing