Skip to main content

Advertisement

Log in

CO2 capture using amine incorporated UiO-66 in atmospheric pressure

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Composite material, tetraethylenepentamine (TEPA) incorporated UiO-66 was prepared by impregnation method to study CO2 capture in a fixed bed reactor, atmospheric pressure. All synthesized adsorbents were characterized using PXRD, N2 adsorption–desorption isotherms, FT-IR, TGA, SEM, and Elemental analysis. Characterization results have revealed that incorporated TEPA was present within pores of UiO-66. CO2 adsorption was higher on TEPA incorporated UiO-66 compared to UiO-66. It was due to the chemical interaction between –NH2 and CO2. High CO2 adsorption capacity 3.70 mmol g−1 was obtained on 30TEPA/UiO-66 at 75 °C, 1 bar. Because of more flexibility and high dispersive nature of TEPA at this temperature. The same CO2 adsorption capacity was obtained in each adsorption cycle without decomposition of the amine on 30TEPA/UiO-66. Avrami adsorption kinetic model has suggested adsorption of CO2 on composite material was chemical adsorption and deactivation model suggested an initial rate of adsorption was higher on TEPA incorporated UiO-66.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Li, K. Huang, J.A. Schott, Z. Wu, S. Dai, Microporous Mesoporous Mater. 249, 34–41 (2017)

    Article  CAS  Google Scholar 

  2. D. Aaron, C. Tsouris, Sep. Sci. Technol. 40, 321–348 (2005)

    Article  CAS  Google Scholar 

  3. B. Guo, L. Chang, K. Xie, J. Nat. Gas Chem. 15, 223–229 (2006)

    Article  CAS  Google Scholar 

  4. S. Hu, C. Li, D. Wan, K. Li, C. Yu, W. Kong, J. Porous Mater. 25, 1691–1696 (2018)

    Article  CAS  Google Scholar 

  5. M.R. Delgado, C.O. Arean, Energy 36, 5286–5291 (2011)

    Article  CAS  Google Scholar 

  6. F. Gholipour, M. Mofarahi, J. Supercrit. Fluids 111, 47–54 (2016)

    Article  CAS  Google Scholar 

  7. N. Chalal, H. Bouhali, H. Hamaizi, B. Lebeau, A. Bengueddach, Microporous Mesoporous Mater. 210, 32–38 (2015)

    Article  CAS  Google Scholar 

  8. T.L. Chew, A.L. Ahmad, S. Bhatia, Adv. Colloid Interface Sci. 153, 43–57 (2010)

    Article  CAS  Google Scholar 

  9. A. Dhakshinamoorthy, A.M. Asiri, J.R. Herance, H. Garcia, Catal. Today 306, 2–8 (2018)

    Article  CAS  Google Scholar 

  10. O.A. Kholdeeva, Catal. Today 278, 22–29 (2016)

    Article  CAS  Google Scholar 

  11. B. Li, H. Wang, B. Chen, Chem. Asian J. 9, 1474–1498 (2014)

    Article  CAS  Google Scholar 

  12. A. Argoub, R. Ghezini, C. Bachir, B. Boukoussa, A. Khelifa, A. Bengueddach, P.G. Weidler, R. Hamacha, J. Porous Mater. 25, 199–205 (2018)

    Article  CAS  Google Scholar 

  13. C. Orellana-Tavra, S.A. Mercado, D. Fairen-Jimenez, Adv. Healthc. Mater. 5, 2261–2270 (2016)

    Article  CAS  Google Scholar 

  14. C.-Y. Sun, C. Qin, X.-L. Wang, Z.-M. Su, Expert Opin. Drug Deliv. 10, 89–101 (2013)

    Article  Google Scholar 

  15. E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, C. Wöll, Appl. Phys. Lett. 103, 091903–091907 (2013)

    Article  Google Scholar 

  16. H.R. Abid, Z.H. Rada, J. Shang, S. Wang, Polyhedron 120, 103–111 (2016)

    Article  CAS  Google Scholar 

  17. Z. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, S. Deng, J. Colloid Interface Sci. 357, 504–509 (2011)

    Article  CAS  Google Scholar 

  18. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  Google Scholar 

  19. Y. Lin, H. Lin, H. Wang, Y. Suo, B. Li, C. Kong, L. Chen, J. Mater. Chem. A 2, 14658–14665 (2014)

    Article  CAS  Google Scholar 

  20. F. Martínez, R. Sanz, G. Orcajo, D. Briones, V. Yángüez, Chem. Eng. Sci. 142, 55–61 (2016)

    Article  Google Scholar 

  21. X. Wang, L. Chen, Q. Guo, Chem. Eng. J. 260, 573–581 (2015)

    Article  CAS  Google Scholar 

  22. W. Wang, X. Wang, C. Song, X. Wei, J. Ding, J. Xiao, Energy Fuels 27, 1538–1546 (2013)

    Article  CAS  Google Scholar 

  23. M.B. Yue, Y. Chun, Y. Cao, X. Dong, J.H. Zhu, Adv. Funct. Mater. 16, 1717–1722 (2006)

    Article  CAS  Google Scholar 

  24. M. Anbia, V. Hoseini, J. Nat. Gas Chem. 21, 339–343 (2012)

    Article  CAS  Google Scholar 

  25. C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P.L. Llewellyn, M. Latroche, Dalton Trans. 40, 4879–4881 (2011)

    Article  CAS  Google Scholar 

  26. K. Upendar, T.V. Sagar, G. Raveendra, N. Lingaiah, B.V.S.K. Rao, R.B.N. Prasad, P.S.S. Prasad, RSC Adv. 4, 7142–7147 (2014)

    Article  CAS  Google Scholar 

  27. Q. Liu, J. Shi, Q. Wang, M. Tao, Y. He, Y. Shi, Ind. Eng. Chem. Res. 53, 17468–17475 (2014)

    Article  CAS  Google Scholar 

  28. S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K.P. Lillerud, Cryst. Growth Des. 14, 5370–5372 (2014)

    Article  Google Scholar 

  29. S. Salehi, M. Anbia, Energy Fuels 31, 5376–5384 (2017)

    Article  CAS  Google Scholar 

  30. Y. Lin, Q. Yan, C. Kong, L. Chen, Sci. Rep. 3, 1859 (2013)

    Article  Google Scholar 

  31. H.R. Abid, G.H. Pham, H.M. Ang, M.O. Tade, S. Wang, J. Colloid Interface Sci. 366, 120–124 (2012)

    Article  CAS  Google Scholar 

  32. J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interface Sci. 497, 126–133 (2017)

    Article  CAS  Google Scholar 

  33. X. Wang, H. Li, X.J. Hou, J. Phys. Chem. C 116, 19814–19821 (2012)

    Article  CAS  Google Scholar 

  34. X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T.A. Hatton, A.C.S. Appl, Mater. Interfaces 9, 11299–11306 (2017)

    Article  CAS  Google Scholar 

  35. L. Guo, J. Yang, G. Hu, X. Hu, H. DaCosta, M. Fan, Nano Energy 25, 1–8 (2016)

    Article  CAS  Google Scholar 

  36. L. Guo, X. Hu, G. Hu, J. Chen, Z. Li, W. Dai, H.F.M. Dacosta, M. Fan, Fuel Process. Technol. 138, 663–669 (2015)

    Article  CAS  Google Scholar 

  37. G. Zhang, P. Zhao, L. Hao, Y. Xu, J CO2 Util. 24, 22–33 (2018)

    Article  CAS  Google Scholar 

  38. X. Wang, Q. Guo, Energy Fuels 30, 3281–3288 (2016)

    Article  CAS  Google Scholar 

  39. Y. Liu, J. Shi, J. Chen, Q. Ye, H. Pan, Z. Shao, Y. Shi, Microporous Mesoporous Mater. 134, 16–21 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC: 51702205) and STU scientific research foundation for Talents (NTF17001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mutyala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutyala, S., Yu, YD., Jin, WG. et al. CO2 capture using amine incorporated UiO-66 in atmospheric pressure. J Porous Mater 26, 1831–1838 (2019). https://doi.org/10.1007/s10934-019-00779-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00779-x

Keywords

Navigation