Skip to main content
Log in

The effects of grafting density and charge fraction on the properties of ring polyelectrolyte brushes: a molecular dynamics simulation study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Using molecular dynamics simulations, the flexible ring polyelectrolyte chains tethered to a planar substrate and immersed in good solvents are investigated systematically. Two sets of simulations are performed to explore the effects of grafting density and charge fraction, respectively. Both the monovalent and trivalent counterions are considered. The height of the brush H follows a scaling relation with grafting density (~σgν) and charge fraction (~fν). The values of the exponents are different from those of the linear counterparts. Through a careful analysis on the distributions of monomers and counterions, pair correlation functions of monomer-monomer and monomer-counterion, as well as the fractions of trivalent counterions in four states, the equilibrium structures of the ring PE brushes are examined in detail. Furthermore, a brief comparison with the ‘equivalent’ linear brush is carried out. Also, our results can serve as a guide for improving the performance of ring polyelectrolyte brushes as unique surface modifiers.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010). Nat Mater 9:101

    CAS  Google Scholar 

  2. Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015). Soft Matter 11:8550

    CAS  PubMed  Google Scholar 

  3. Kinjo T, Yoshida H, Washizu H (2018). Colloid Polym Sci 296:1

    Google Scholar 

  4. Pincus P (1991). Macromolecules 24:2912

    CAS  Google Scholar 

  5. Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009). Nanotechnology 20:434006

    PubMed  Google Scholar 

  6. Kreer T (2016). Soft Matter 12:3479

    CAS  PubMed  Google Scholar 

  7. Benetti EM, Divandari M, Ramakrishna SN, Morgese G, Yan WQ, Trachsel L (2017). Chem Eur J 23:12433

    CAS  PubMed  Google Scholar 

  8. Cao DP, Wu JZ (2006). Langmuir 22:2712

    CAS  PubMed  Google Scholar 

  9. Zhulina EB, Leermakers FAM, Borisov OV (2016). Macromolecules 49:8758

    Google Scholar 

  10. Qiu WJ, Li BH, Wang Q (2018). Soft Matter 14:1887

    CAS  PubMed  Google Scholar 

  11. Li L, Yan B, Zhang L, Tian Y, Zeng HB (2015). Chem Commun 51:15780

    CAS  Google Scholar 

  12. Wei T, Zhou YY, Zhan WJ, Zhang ZB, Zhu XL, Yu Q, Chen H (2017). Colloids Surf B: Biointerfaces 159:527

    CAS  PubMed  Google Scholar 

  13. Morgese G, Trachsel L, Romio M, Divandari M, Ramakrishna SN, Benetti EM (2016). Angew Chem Int Ed 55:15583

    CAS  Google Scholar 

  14. Morgese G, Trachsel L, Romio M, Divandari M, Ramakrishna SN, Benetti EM (2017). Angew Chem Int Ed 56:2236

    CAS  Google Scholar 

  15. Divandari M, Morgese G, Trachsel L, Romio M, Dehghani ES, Rosenboom JG, Paradisi C, Zenobi-Wong M, Ramakrishna SN, Benetti EM (2017). Macromolecules 50:7760

    CAS  Google Scholar 

  16. Morgese G, Shaghasemi BS, Causin V, Zenobi-Wong M, Ramakrishna SN, Reimhult E, Benetti EM (2017). Angew Chem Int Ed 56:4507

    CAS  Google Scholar 

  17. Erbas A, Paturej J (2015). Soft Matter 11:3139

    CAS  PubMed  Google Scholar 

  18. Reith D, Milchev A, Virnau P, Binder K (2011). Europhys Lett 95:28003

    Google Scholar 

  19. Reith D, Milchev A, Virnau P, Binder K (2012). Macromolecules 45:4381

    CAS  Google Scholar 

  20. Milchev A, Binder K (2013). Macromolecules 46:8724

    CAS  Google Scholar 

  21. He SZ, Holger M, Su CF, Wu CX (2013). Chin Phys B 22:016101

    Google Scholar 

  22. Wan WB, Lv HH, Holger M, Wu CX (2016). Chin Phys B 25:106101

    Google Scholar 

  23. Pei HW, Liu XL, Liu H, Zhu YL, Lu ZY (2017). Phys Chem Chem Phys 19:4710

    CAS  PubMed  Google Scholar 

  24. Jones RL, Spontak RJ (1995). J Chem Phys 103:5137

    CAS  Google Scholar 

  25. Jones RL, Spontak RJ (1994). J Chem Phys 101:5179

    CAS  Google Scholar 

  26. Gulati HS, Hall CK, Jones RL, Spontak RJ (1996). J Chem Phys 105:7712

    CAS  Google Scholar 

  27. Goren T, Spencera ND, Crockett R (2014). RSC Adv 4:21497

    CAS  Google Scholar 

  28. Kremer K, Grest GS (1990). J Chem Phys 92:5057

    CAS  Google Scholar 

  29. Guptha VS, Hsiao PY (2014). Polymer 55:2900

    CAS  Google Scholar 

  30. Jackson NE, Brettmann BK, Vishwanath V, Tirrell M, de Pablo JJ (2017). ACS Macro Lett 6:155

    CAS  Google Scholar 

  31. Hao QH, Xia G, Miao B, Tan HG, Niu XH, Liu LY (2018). Macromolecules 51:8513

    CAS  Google Scholar 

  32. Yu J, Jackson NE, Xu X, Morgenstern Y, Kaufman Y, Ruths M, de Pablo JJ, Tirrell M (2018). Science 360:1434

    CAS  PubMed  Google Scholar 

  33. Frenkel D, Smit B (2002) Understanding molecular simulations. Academic Press, New York

    Google Scholar 

  34. Ballenegger V, Arnold A, Cerdà JJ (2009). J Chem Phys 131:094107

    CAS  PubMed  Google Scholar 

  35. Plimpton SJ (1995). J Comput Phys 117:1

    CAS  Google Scholar 

  36. Cao Q, Zuo C, He H, Li L (2009). Macromol Theory Simul 18:441

    CAS  Google Scholar 

  37. Cao Q, Zuo C, Li L, He H (2010). Model Simul Mater Sci Eng 18:075001

    Google Scholar 

  38. Csajka FS, Seidel C (2000). Macromolecules 33:2728

    CAS  Google Scholar 

  39. Farina R, Laugel N, Pincus P, Tirrell M (2013). Soft Matter 9:10458

    CAS  Google Scholar 

  40. Yu J, Mao J, Yuan G, Satija S, Jiang Z, Chen W, Tirrell M (2016). Macromolecules 49:5609

    CAS  Google Scholar 

  41. Netz RR, Andelman D (2003). Phys Rep 380:1

    CAS  Google Scholar 

  42. Alexander S (1977). J Physiol Paris 38:983

    CAS  Google Scholar 

  43. Milner ST, Witten TA, Cates ME (1988). Macromolecules 21:2610

    CAS  Google Scholar 

  44. Zhulina EB, Borisov OV, Pryamitsyn VA, Birshtein TM (1991). Macromolecules 24:140

    CAS  Google Scholar 

  45. Brettmann B, Pincus P, Tirrell M (2017). Macromolecules 50:1225

    CAS  Google Scholar 

  46. Brettmann BK, Laugel N, Hoffmann N, Pincus P, Tirrell M (2015). J Polym Sci A Polym Chem 54:284

    Google Scholar 

  47. Nap RJ, Solveyra EG, Szleifer I (2018). Biomater Sci 6:1048

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Manning GS (1969). J Chem Phys 51:3249

    CAS  Google Scholar 

  49. Miao B, Vilgis TA (2012). Macromol Theory Simul 21:582

    CAS  Google Scholar 

Download references

Funding

Financial support was provided by the National Natural Science Foundation of China (NSFC) (Grant Nos. 21674005, 21544007, 21774131) and the Fundamental Research Funds for the Central Universities (Grant No. 3122018L007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Hai Hao or Bing Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, QH., Liu, LX., Xia, G. et al. The effects of grafting density and charge fraction on the properties of ring polyelectrolyte brushes: a molecular dynamics simulation study. Colloid Polym Sci 298, 21–33 (2020). https://doi.org/10.1007/s00396-019-04579-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04579-2

Keywords

Navigation