Skip to main content

Advertisement

Log in

Nitrogen substitution effect on hydrogen adsorption properties of Ti-decorated benzene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations are performed to study hydrogen storage properties of Ti-doped benzene and Ti-doped nitrogen-substituted benzene complexes. Two of the carbon atoms in benzene are replaced by two nitrogen atoms. Two nitrogen atoms are substituted either at 1-2, 1-3, or 1-4 positions of a benzene ring and named as BN1-2Ti, BN1-3Ti, and BN1-4Ti, respectively. Maximum four, four, three, and four H2 molecules get adsorbed on C6H6Ti, BN1-2Ti, BN1-3Ti, and BN1-4Ti complexes respectively with respective H2 uptake capacity of 6.02, 5.84, 4.45, and 5.84 wt%. The positive Gibbs free energy corrected H2 adsorption energy values obtained for all these complexes at ambient conditions indicate that the formation of these complexes at room temperature is thermodynamically favorable. Temperature- and pressure-dependent adsorption energy calculations show that the H2 adsorption on all these complexes is feasible over a wide range of temperature and pressure. The gap between the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbital (LUMO) is found to be greater than 5 eV for all the complexes indicating stability of these complexes. The H2 molecules interact more strongly with Ti-doped nitrogen-substituted benzene than the Ti-doped benzene that results in higher H2 desorption temperature obtained using van 't Hoff equation for the former than the latter. The density of states plots have been used to understand the H2 adsorption mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jena P (2011). J Phys Chem Lett 2:206

    Article  CAS  Google Scholar 

  2. Huang B, Lee H, Duan W, Ihm J (2008). Appl Phys Lett 93:063107

    Article  Google Scholar 

  3. Kolmann SJ, Chan B, Jordan MJT (2008). Chem Phys Lett 467:126

    Article  CAS  Google Scholar 

  4. Lee H, Ihm J, Cohen ML, Louie SG (2010). Nano Lett 10:793

    Article  CAS  Google Scholar 

  5. Anafcheh M, Naderi F (2018). Int J Hydrog Energy 43:12271

    Article  CAS  Google Scholar 

  6. Yildirim T, Iniguez J, Ciraci S (2005). Phys Rev B 72:153403

    Article  Google Scholar 

  7. Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012). Int J Hydrog Energy 37:5114

    Article  CAS  Google Scholar 

  8. Mei F, Ma X, Bie Y, Xu G (2017). J Comp Chem 16:1750065

    CAS  Google Scholar 

  9. Weck PF, Dhilip Kumar TJ, Kim E, Balakrishnan N (2007). J Chem Phys 126:094703

    Article  Google Scholar 

  10. Dong LX, Hong Z, Jian TY, Dong WW, Yang WC (2012). Chin J Struct Chem 31:459

    Google Scholar 

  11. Kalamse V, Wadnerkar N, Chaudhari A (2013). Energy 49:469

    Article  CAS  Google Scholar 

  12. Phillips AB, Shivaram BS, Myneni GR (2012). Int J Hydrog Energy 37:1546

    Article  CAS  Google Scholar 

  13. Sun Q, Wang Q, Jena P, Kawazoe Y (2005). J Am Chem Soc 127:14582

    Article  CAS  Google Scholar 

  14. Durgun E, Ciraci S, Yildirim T (2008). Phys Rev B 77:085405

    Article  Google Scholar 

  15. Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M, Wu X (2017). App Sur Sci 399:463

    Article  CAS  Google Scholar 

  16. Huang X, Zhao YJ, Liao JH, Yang XB (2016). Int J Hydrog Energy 41:11275

    Article  CAS  Google Scholar 

  17. Deshmukh A, Konda R, Kalamse V, Chaudhari A (2016). RSC Adv 6:47033

    Article  CAS  Google Scholar 

  18. Tavhare P, Titus E, Chaudhari A (2018). Int J Hydrog Energy 44:345

    Article  Google Scholar 

  19. Tavhare P, Deshmukh A, Chaudhari A (2017). Phys Chem Chem Phys 19:681

    Article  CAS  Google Scholar 

  20. Lin IH, Tong YJ, Hsieh HJ, Huang HW, Chen HT (2016). Int J Energy Res 40:230

    Article  CAS  Google Scholar 

  21. Huang HW, Hsieh HJ, Lin IH, Tong YJ, Chen HT (2015). J Phys Chem C 119:7662

    Article  CAS  Google Scholar 

  22. Sankaran M, Viswanathan B (2006). Carbon 44:2816

    Article  CAS  Google Scholar 

  23. Wang L, Yang FH, Yang RT (2009). AIChE J 55:1823

    Article  CAS  Google Scholar 

  24. He H, Chen X, Zou W, Li R (2018). Int J Hydrog Energy 43:2823

    Article  CAS  Google Scholar 

  25. Wang L, Yang RT (2009). J Phys Chem C 113:21883

    Article  CAS  Google Scholar 

  26. Omidvar A (2017). Chem Phys 493:85

    Article  CAS  Google Scholar 

  27. Srinivasu K, Ghosh SK (2012). J Phys Chem C 116:25184

    Article  CAS  Google Scholar 

  28. Srivastava AK, Misra N (2015). Chem Phys Lett 625:5

    Article  CAS  Google Scholar 

  29. Ewels CP, Glerup M (2005). J Nanosci Nanotechnol 5:1345

    Article  CAS  Google Scholar 

  30. Ayala P, Arenal R, Rummeli M, Rubio A, Pichler T (2010). Carbon 48:575

    Article  CAS  Google Scholar 

  31. Møller C, Plesset MS (1934). Phys Rev 46:618

    Article  Google Scholar 

  32. O’Boyle NM, Tenderholt AL, Langner KM (2008). J Comput Chem 29:839

    Article  Google Scholar 

  33. Ma LJ, Jia J, Wu HS (2015). Chem Phys 457:57

    Article  CAS  Google Scholar 

  34. Lide DR (1994) CRC handbook of chemistry and physics75th edn. CRC Press, New York

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CT

    Google Scholar 

Download references

Acknowledgments

Financial support to Priyanka Tavahre from Department of Science and Technology, India under Womens Scientist Scheme - A (Grand No: SR/WOS-A/PM-33/2017) is thankfully acknowledged. Thanks to The Institute of Science, Mumbai. Bioinformatics Resources and Applications Facility (BRAF) from C-DAC, Pune is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhari.

Ethics declarations

Ethical statement

The work has not been submitted elsewhere for publication. The claimed new results express our own findings.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavhare, P., Chaudhari, A. Nitrogen substitution effect on hydrogen adsorption properties of Ti-decorated benzene. Struct Chem 30, 2151–2158 (2019). https://doi.org/10.1007/s11224-019-01340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01340-x

Keywords

Navigation