Skip to main content
Log in

Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM-DFT approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic studies of the hydrogen atom transfer (HAT) from hydroxyl (OH) groups of four kaempferol-based compounds, namely kaempferol, morin, morin-5*-sulfonate and morin-7-O-sulfate to hydroxyl radical (·OH), have been carried out using density functional theory (DFT) methods at the CAM-B3LYP/6–311++G(d,p) level equipped with polarizable continuum model (PCM) of solvation. All HAT reactions in aqueous solution are exothermic and spontaneous. For most compounds, the most preferable OH group for HAT is situated at position C3 (O3-H3) on the pyrone ring. The reaction potential of such a reactive group is found to be highest in morin-7-O-sulfate. The rate constants for the HAT reactions at different OH groups of each compound have been determined based on the transition state theory. The presence of substituents leads to the variation in either the characteristic interactions at the reactive site or the charge distribution on transition-state geometries, hence significantly affecting the kinetics of HAT. The highest rate of HAT is resulted for the OH group at position C4* (O4*-H4*) on the phenyl ring (ring B) of morin-5*-sulfonate because a hydrogen bond between ·OH and the sulfonate group favors the formation of transition state. However, for most compounds under study, the HAT reaction at O3-H3 initiated by ·OH is highly favorable both thermodynamically and kinetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen AY, Chen YC (2013). Food Chem 138:2099–2107

    Article  CAS  Google Scholar 

  2. Alkhamees A (2013) O. Br J Pharmacol Toxicol 4:10–17

    Article  CAS  Google Scholar 

  3. Shahabadi N, Mohammadpour M (2012). Spectrochim Acta A Mol Biomol Spectrosc 86:191–195

    Article  CAS  Google Scholar 

  4. Pieniążek E, Kalembkiewicz J, Dranka M, Woźnicka E (2014). J Inorg Biochem 141:180–187

    Article  Google Scholar 

  5. Chen Y, Zheng R, Jia Z, Ju Y (1990). Free Radic Biol Med 9:19–21

    Article  Google Scholar 

  6. Amić D, Davidović-Amić D, Beslo D, Trinajstić N (2003). Croat Chem Acta 76:55–61

    Google Scholar 

  7. Treml J, Šmejkal K (2016). Compr Rev Food Sci Food Saf 15:720–738

    Article  CAS  Google Scholar 

  8. Husain SR, Cillard J, Cillard P (1987). Phytochemistry 26:2489–2491

    Article  CAS  Google Scholar 

  9. Chen J-W, Zhu Z-Q, Hu T-X, Zhu D-Y (2002). Acta Pharmacol Sin 23:667–672

    CAS  PubMed  Google Scholar 

  10. Chen X, Deng Z, Zhang C, Zheng S, Pan Y, Wang H, Li H (2018). Food Res Int. https://doi.org/10.1016/j.foodres.2018.11.018

  11. Dar RA, Naikoo GA, Hassan IU, Shaikh AMH (2016). Anal Chem Res 7:1–8

    Article  CAS  Google Scholar 

  12. Li H-W, Zou T-B, Jia Q, Xia E-Q, Cao W-J, Liu W, He T-P, Wang Q (2016). Biomed Pharmacother 84:909–916

    Article  CAS  Google Scholar 

  13. Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000). J Phys Org Chem 13:253–265

    Article  CAS  Google Scholar 

  14. Georgieva I, Trendafilova N, Aquino AJA, Lischka H (2006). J Phys Chem A 111:127–135

    Article  Google Scholar 

  15. Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012). Food Chem 135:2070–2077

    Article  Google Scholar 

  16. Yasarawan N, Thipyapong K, Ruangpornvisuti V (2014). J Mol Graph Model 51:13–26

    Article  CAS  Google Scholar 

  17. Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2004). Chem Phys Chem 5:1726–1733

    Article  CAS  Google Scholar 

  18. Sadasivam K, Kumaresan R (2011). Mol Phys 109:839–852

    Article  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams DF, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 (Revision B.01). Gaussian Inc., Wallingford

    Google Scholar 

  20. Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  21. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008). J Chem Theory Comput 4:123–135

    Article  CAS  Google Scholar 

  22. Shchavlev AE, Pankratov AN, Shalabay AV (2005). J Phys Chem A 109:4137–4148

    Article  CAS  Google Scholar 

  23. Hao C, Tureček F (2009). J Am Soc Mass Spectrom 20:639–651

    Article  CAS  Google Scholar 

  24. Li M, Xie L-F, Ju X-H, Zhao F-Q (2013). Petrol Chem+ 53:431–437

    Article  CAS  Google Scholar 

  25. Yasarawan N, Thipyapong K, Ruangpornvisuti V (2016). J Mol Struct 1107:278–290

    Article  CAS  Google Scholar 

  26. Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  27. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. TCI, University of Wisconsin, Madison

    Google Scholar 

  28. Zhao J, Zhang R (2008) In: Sabin J, Brandas E (eds) Advances in Quantum Chemistry: Applications of Theoretical Methods to Atmospheric Science, vol 55. Academic Press, San Diego, pp 177–214

    Chapter  Google Scholar 

  29. Suwattanamala A, Ruangpornvisuti V (2009). Struct Chem 20:619–631

    Article  CAS  Google Scholar 

  30. Seyoum A, Asres K, El-Fiky FK (2006). Phytochemistry 67:2058–2070

    Article  CAS  Google Scholar 

  31. Matei I, Tablet C, Ionescu S, Hillebrand M (2014). Rev Roum Chim 59:401–405

    Google Scholar 

  32. Anouar EH, Marakchi K, Komiha N, Kabbaj OK, Dhaouadi Z, Lahmar S (2009). Phys Chem News 45:107–113

    CAS  Google Scholar 

  33. Atohoun YGS, Doco RC, Houngue MTAK, Kuevi AU, Kpotin GA, Mensah J-B (2016). Am J Sci Ind Res 7:145–152

    Google Scholar 

  34. Dimitrić Marković JM, Milenković D, Amić D, Popović-Bijelić A, Mojović M, Pašti IA, Marković ZS (2014). Struct Chem 25:1795–1804

    Article  Google Scholar 

  35. van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, Donne-Op den Kelder G, van der Vijgh WJF, Bast A (1996). Chem Res Toxicol 9:1305–1312

    Article  Google Scholar 

  36. Rong YZ, Wang ZW, Zhao B (2013). Food Biophys 8:90–94

    Article  Google Scholar 

  37. Bondi A (1964). J Phys Chem 68:441–452

    Article  CAS  Google Scholar 

  38. Parthasarathi P, Subramanian V (2006) Characterization of Hydrogen Bonding: From van der Waals Interactions to Covalency. In: Grabowski SJ (ed) Hydrogen Bonding - New Insights, vol 3. Challenges and Advances in Computational Chemistry and Physics, vol 3. Springer, Dordrecht, pp 1–50

    Google Scholar 

  39. Cao S, Jiang X, Chen J (2010). J Inorg Biochem 104:146–152

    Article  CAS  Google Scholar 

  40. Souza RFV, De Giovani WF (2005). Spectrochim Acta A Mol Biomol Spectrosc 61:1985–1990

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Akapong Suwattanamala at Burapha University for his valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuttawisit Yasarawan.

Ethics declarations

Conflict of interest

This statement is to declare that there are no known conflicts of interest associated with the manuscript entitled “Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM/DFT approach” by Khajadpai Thipyapong and Nuttawisit Yasarawan. There has been no significant financial support for this work that could have influenced its outcome. We further confirm that there are no ethical issues to declare in this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thipyapong, K., Yasarawan, N. Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM-DFT approach. Struct Chem 30, 2167–2180 (2019). https://doi.org/10.1007/s11224-019-01331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01331-y

Keywords

Navigation