Isolation of Trichoderma from forestry model base and the antifungal properties of isolate TpsT17 toward Fusarium oxysporum

https://doi.org/10.1016/j.micres.2019.126371Get rights and content
Under an Elsevier user license
open archive

Abstract

Eleven soil samples were collected from different plantations at the Forestry Model Base, Northeast Forestry University, China (45°43ʹ10″N, 126°37ʹ15″E), and 122 Trichoderma strains (T1–T122) were isolated. Nine Trichoderma species were identified based on morphological and molecular classification methods. The diversity of woody fungi was analyzed based on the type and quantity of Trichoderma spp. in the soil samples isolated from each plantation. Subdominant T. pseudoharzianum T17 (TpsT17) was screened and its biocontrol potential against Fusarium oxysporum CFCC86068 (Fox68) and growth promotion of Populus davidiana × P. alba var. pyramidalis (PdPap) seedlings were investigated. Compared with PdPap + Fox68 treatment, PdPap + TpsT17 + Fox68 treatment had an obvious antagonistic effect on Fox68 based on the status of roots and stomata of the poplar seedlings. In addition, pretreatment with TpsT17 increased catalase activity 14-fold and decreased hydrogen peroxide and malondialdehyde concentrations 2.57- and 7-fold, respectively, in the PdPap + TpsT17 + Fox68 treatment compared with the PdPap + Fox68 treatment. The transcription levels of PR1, JAZ6751, MYC2, MP, and JAR1 in PdPap + TpsT17+Fox68-treated plants were upregulated 5.75-, 5.63-, 14.88-, 8.24-, and 10.45-fold, respectively, at 3 d, while LAX2 exhibited little change in comparison with the level in PdPap + Fox-treated plants. TpsT17 was detected in the roots and stems of PdPap + TpsT17- and PdPap + TpsT17+Fox68-treated PdPap 28 d after inoculation, which demonstrated the endogenous capacity of TpsT17.

Keywords

Trichoderma
Resource collection
Identification
Populus
Antifungal property

Cited by (0)