Skip to main content
Log in

Microencapsulation of Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Microencapsulation of partially purified microbial transglutaminase (mTG) was investigated using ultrasonic spray-freeze drying (USFD), and the optimum coating materials (gum arabic, maltodextrin, inulin) ratio and the process parameters (flow rate and nozzle frequency) were determined using a D-optimal combined design. Also, the microencapsulated samples by USFD were compared with microencapsulated samples by conventional freeze drying (CFD) and conventional spray drying (CSD) in terms of microencapsulation efficiency, enzyme stability at extreme pH and high temperature conditions, and the presence of metal ions, physical (moisture content, particle morphology, particle and pore size, surface area, pore volume distribution, density and flow properties, caking degree, color), and reconstitution (wettability and solubility) properties. As a result, the optimum coating materials composition was determined as 60% gum arabic and 40% inulin, and process conditions were found to be flow rate of 6.83 ml/min and nozzle frequency of 48 kHz applying desirability function method. Microcapsules with smaller particle size, pore volume, and porosity, with lower moisture content and good reconstitution characteristics, were obtained by USFD with a maximum microencapsulation efficiency of ~ 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6(6), 1561–1569.

    Article  CAS  Google Scholar 

  • Allison, S. D., Chang, B., Randolph, T. W., & Carpenter, J. F. (1999). Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Archives of Biochemistry and Biophysics, 365(2), 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Amid, M., Manap, Y., & Zohdi, K. N. (2014). Microencapsulation of purified amylase enzyme from pitaya (hylocereus polyrhizus) peel in arabic gum-chitosan using freeze drying. Molecules, 19, 3731–3743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amine, K. M., Champagne, C. P., Salmeri, S., Britten, M., St-Gelais, D., Fustier, P., & Lacroix, M. (2014). Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT - Food Science and Technology, 56, 111–117.

    Article  CAS  Google Scholar 

  • Anchordoquy, T. J., Izutsu, K. I., Randolph, T. W., & Carpenter, J. F. (2001). Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze–drying. Archives of Biochemistry and Biophysics, 390(1), 35–41.

    Article  CAS  PubMed  Google Scholar 

  • AOAC. (1990). Official methods for analysis (15th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Bourneow, C., Benjakul, S., & H-Kittikun, A. (2012). Impact of some additives on the stability of microbial transglutaminase from Providencia sp. C1112. Asian Journal of Food and Agro-Industry, 5(3), 226–233.

    Google Scholar 

  • Breda, M., Vitolo, M., Duranti, M. A., & Pitombo, R. N. (1992). Effect of freezing-thawing on invertase activity. Cryobiology, 29(2), 281–290.

    Article  CAS  Google Scholar 

  • Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420–428.

    Article  CAS  Google Scholar 

  • Carpenter, J. F., & Crowe, J. H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 28(9), 3916–3922.

    Article  CAS  PubMed  Google Scholar 

  • Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering Journal, 72, 163–168.

    CAS  Google Scholar 

  • Constantino, H. R., Firouzabadian, L., Wu, C., Carrasquillo, K. G., Griebenow, K., Zale, S. E., & Tracy, M. A. (2000). Protein spray freeze drying: effect of formulation variables on particle size and stability. Journal of Pharmaceutical Science, 17(11), 1374–1383.

    Google Scholar 

  • D’Addio, S. M., Chan, J. G. Y., Kwok, P. C. L., Prud’homme, R. K., & Chan, H. K. (2012). Constant size, variable density aerosol particles by ultrasonic spray freeze drying. International Journal of Pharmaceutics, 427(2), 185–191.

    Article  PubMed  CAS  Google Scholar 

  • De Boer, J. H. (1958). The structure and properties of porous materials. In Proceedings of the Tenth Symposium of the Colston Research Society Held in the University of Bristol (pp. 68–94). London: Butterworths.

    Google Scholar 

  • Desai, K. G. H., & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23, 1361–1394.

    Article  CAS  Google Scholar 

  • Dima, C., Pătraşcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry, 195, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Dolly, P., Anishaparvin, A., Joseph, G. S., & Anandharamakrishnan, C. (2011). Microencapsulation of Lactobacillus plantarum (MTCC 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. Journal of Microencapsulation, 28(6), 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, H. J. C., Hinrichs, W. L. J., van Veen, B., Somsen, G. W., de Jong, G. J., & Frijlink, H. W. (2002). Investigations into the stabilisation of drugs by sugar glasses: I. Tablets prepared from stabilised alkaline phosphatase. International Journal of Pharmaceutics, 249(1), 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  CAS  Google Scholar 

  • Feng, H., Barbosa-Cánovas, G. V., & Weiss, J. (2011). Ultrasound technologies for food and bioprocessing. New York: Springer Science and Business Media, 599p.

    Book  Google Scholar 

  • Furlán, L. T. R., Lecot, J., Padilla, A. P., Campderrós, M. E., & Zaritzky, N. (2012). Stabilizing effect of saccharides on bovine plasma protein: A calorimetric study. Meat Science, 91(4), 478–485.

    Article  CAS  Google Scholar 

  • Gaspar, A. L. C., & de Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry, 171, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Grasmeijer, N., Stankovic, M., de Waard, H., Frijlink, H. W., & Hinrichs, W. L. (2013). Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. BBA Proteins and Proteomics, 1834(4), 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd ed.). London: Academic.

    Google Scholar 

  • Hausner, H. H. (1967). Friction conditions in a mass of metal powder. Powder Metallurgy, 13, 7–13.

    Google Scholar 

  • Heidebach, T., Först, P., & Kulozik, U. (2009). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98, 309–316.

    Article  CAS  Google Scholar 

  • Heinrich, Z. (2003). Colour chemistry: syntheses, properties and applications of organic dyes and pigments. Weinheim: Wiley-VCH GmbH & Co. KGaA.

    Google Scholar 

  • Her, J. Y., Kim, M. S., & Lee, K. G. (2015). Preparation of probiotic powder by the spray freeze-drying method. Journal of Food Engineering, 150, 70–74.

    Article  Google Scholar 

  • Hundre, S. Y., Karthik, P., & Anandharamakrishnan, C. (2015). Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chemistry, 174, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Ishwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-freeze-drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180.

    Article  Google Scholar 

  • Ishwarya, S. P., Anandharamakrishnan, C., & Stapley, A. G. F. (2015). Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends in Food Science and Technology, 41(2), 161–181.

    Article  CAS  Google Scholar 

  • Isleroglu, H., Turker, I., Tokatli, M., & Koc, B. (2018). Ultrasonic spray-freeze drying of partially purified microbial transglutaminase. Food and Bioproducts Processing, 111, 153–164.

    Article  CAS  Google Scholar 

  • Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205.

    Article  Google Scholar 

  • Karthik, P., & Anandharamakrishnan, C. (2013). Microencapsulation of docosahexaenoic acid by spray-freeze drying method and comparison of its stability with spray-drying and freeze-drying methods. Food and Bioprocess Technology, 6, 2780–2790.

    Article  CAS  Google Scholar 

  • Kumar, R., & Kar, A. (2014). Microencapsulation of nutraceuticals using spray freeze drying method: a brief review. Indo Global Journal of Pharmaceutical Sciences, 4(2), 47–51.

    Google Scholar 

  • Kurozawa, L. E., Morassi, A. G., Vanzo, A. A., Park, K. J., & Hubinger, M. D. (2009). Influence of spray drying conditions on physicochemical properties of chicken meat powder. Drying Technology, 27(11), 1248–1257.

    Article  CAS  Google Scholar 

  • Labani, M. M., Rezaee, R., Saeedi, A., & Hinai, A. A. (2013). Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: a case study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112, 7–16.

    Article  CAS  Google Scholar 

  • Maa, Y. F., Nguyen, P. A., Sweeney, T., Shire, S. J., & Hsu, C. C. (1999). Protein inhalation powders: spray drying vs spray freeze drying. Pharmaceutical Research, 16(2), 249–254.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, C., McKittrick, J., Hindmarsh, J., Johns, M., & Wilson, D. (2006). Fundamentals of spray freezing of instant coffee. Journal of Food Engineering, 74(4), 451–461.

    Article  Google Scholar 

  • Motoki, M., & Seguro, K. (1998). Transglutaminase and its use for food processing. Trends in Food Science and Technology, 9(5), 204–210.

    Article  CAS  Google Scholar 

  • Mujumdar, A. S. (2014). Handbook of Industrial Drying. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Nesterenko, A., Alric, I., Violleau, F., Silvestre, F., & Durrieu, V. (2013). A new way of valorizing biomaterials: the use of sunflower protein for α-tocopherol microencapsulation. Food Research International, 53(1), 115–124.

    Article  CAS  Google Scholar 

  • Nguyen, C. X., Herberger, J. D., & Burke, A. D. (2004). Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharmaceutical Research, 21(3), 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Niwa, T., Shimabara, H., & Danjo, K. (2010). Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs. Chemical and Pharmaceutical Bulletin, 58(2), 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Pang, Y., Duan, X., Ren, G., & Liu, W. (2017). Comparative study on different drying methods of fish oil microcapsules. Journal of Food Quality, 2017, 1–7.

    Article  CAS  Google Scholar 

  • Parthasarathi, S., & Anandharamakrishnan, C. (2016). Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioproducts and Processing, 100, 469–476.

    Article  CAS  Google Scholar 

  • Popović, L. M., Peričin, D. M., Vaštag, Ž. G., & Popović, S. Z. (2013). Optimization of transglutaminase cross-linking of pumpkin oil cake globulin; improvement of the solubility and gelation properties. Food and Bioprocess Technology, 6(4), 1105–1111.

    Article  CAS  Google Scholar 

  • Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology, 60(2), 773–780.

    Article  CAS  Google Scholar 

  • Ramos, A., Raven, N., Sharp, R. J., Bartolucci, S., Rossi, M., Cannio, R., Lebbing, J., Oost, J. V. D., de Vos, W. M., & Santos, H. (1997). Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Applied and Environmental Microbiology, 63(10), 4020–4025.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49(4), 311–319.

    Article  Google Scholar 

  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193–202.

    Article  CAS  Google Scholar 

  • Sonner, C., Maa, Y. F., & Lee, G. (2002). Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. Journal of Pharmaceutical Sciences, 91(10), 2122–2139.

    Article  CAS  PubMed  Google Scholar 

  • Stapley, A. G. F. (2008). Freeze drying. In J. A. Blackwell (Ed.), Frozen food science technology. Oxford: Evans.

    Google Scholar 

  • Sun-Waterhouse, D., Wadhwa, S. S., & Waterhouse, G. I. N. (2013). Spray-drying microencapsulation of polyphenol bioactives: a comparative study using different natural fibre polymers as encapsulants. Food and Bioprocess Technology, 6(9), 2376–2388.

    Article  CAS  Google Scholar 

  • Tonnis, W. F., Amorij, J. P., Vreeman, M. A., Frijlink, H. W., Kersten, G. F., & Hinrichs, W. L. J. (2014). Improved storage stability and immunogenicity of hepatitis B vaccine after spray-freeze drying in presence of sugars. European Journal of Pharmaceutical Sciences, 55, 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Tonnis, W. F., Mensink, M. A., de Jager, A., van der Voort Maarschalk, K., Frijlink, H. W., & Hinrichs, W. L. J. (2015). Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Molecular Pharmaceutics, 12(3), 684–694.

    Article  CAS  PubMed  Google Scholar 

  • Turker, I., Domurcuk, G., Tokatli, M., Isleroglu, H., & Koc, B. (2016). Enhancement of microbial transglutaminase production from Streptomyces sp. Ukrainian Food Journal, 5(2), 306–417.

    Article  CAS  Google Scholar 

  • van Drooge, D. J., Hinrichs, W. L., Dickhoff, B. H., Elli, M. N., Visser, M. R., Zijlstra, G. S., & Frijlink, H. W. (2005). Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. European Journal of Pharmaceutical Sciences, 26(2), 231–240.

  • Wanning, S., Süverkrüp, R., & Lamprecht, A. (2015). Pharmaceutical spray freeze drying. International Journal of Pharmaceutics, 488(1), 136–153.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z., Johnston, K. P., & Williams, R. O. (2006). Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. European Journal of Pharmaceutical Sciences, 27(1), 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Zhu, Y., & Chen, J. (2009). Microbial transglutaminase production: understanding the mechanism. Biotechnology and Genetic Engineering Reviews, 26(1), 205–222.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 115O216) and Tokat Gaziosmanpasa University Scientific Research Projects (Project Number: 2016/62).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Isleroglu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isleroglu, H., Turker, I., Koc, B. et al. Microencapsulation of Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying. Food Bioprocess Technol 12, 2004–2017 (2019). https://doi.org/10.1007/s11947-019-02353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02353-4

Keywords

Navigation