Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liposomal delivery of CRISPR/Cas9

This article has been updated

Abstract

Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 27 August 2020

    The original version of this Article contained duplicated text in the abstract. This has now been removed from both the online PDF and HTML versions of the Article.

References

  1. Taylor DW. The final cut: Cas9 editing. Nat Struct Mol Biol. 2019. https://doi.org/10.1038/s41594-019-0267-1.

  2. Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B. CRISPR RNA-guided autonomous delivery of Cas9. Nat Struct Mol Biol. 2019;26:14–24. https://doi.org/10.1038/s41594-018-0173-y.

    Article  CAS  PubMed  Google Scholar 

  3. Scott A. How CRISPR is transforming drug discovery. Nature. 2018;555:S10–1. https://doi.org/10.1038/d41586-018-02477-1.

    Article  CAS  PubMed  Google Scholar 

  4. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7. https://doi.org/10.1038/nbt.3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen S, Sun CY, Du XJ, Li HJ, Liu Y, Xia JX, et al. Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy. Biomaterials. 2015;70:71–83. https://doi.org/10.1016/j.biomaterials.2015.08.026.

    Article  CAS  PubMed  Google Scholar 

  6. Yeh YC, Kinoshita M, Ng TH, Chang YH, Maekawa S, Chiang YA, et al. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes). Sci Rep. 2017;7:11435 https://doi.org/10.1038/s41598-017-09966-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu K, Malek SN. CRISPR/Cas9-based gene dropout screens. Methods Mol Biol. 2019;1881:185–200. https://doi.org/10.1007/978-1-4939-8876-1_15.

    Article  CAS  PubMed  Google Scholar 

  8. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell. 2018. https://doi.org/10.1016/j.cell.2018.10.024.

  9. Qin W, Wang H. Delivery of CRISPR-Cas9 into mouse zygotes by electroporation. Methods Mol Biol. 2019;1874:179–90. https://doi.org/10.1007/978-1-4939-8831-0_10.

    Article  CAS  PubMed  Google Scholar 

  10. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature Med. 2019. https://doi.org/10.1038/s41591-018-0327-9.

  11. Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu XF. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun. 2018;9:5012. https://doi.org/10.1038/s41467-018-07324-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Mol Pharmaceutics. 2018;15:4814–26. https://doi.org/10.1021/acs.molpharmaceut.8b00434.

    Article  CAS  Google Scholar 

  13. Xiong F, Mi Z, Gu N. Cationic liposomes as gene delivery system: transfection efficiency and new application. Die Pharmazie. 2011;66:158–64.

    CAS  PubMed  Google Scholar 

  14. Wang L, Zheng W, Liu S, Li B, Jiang X. Delivery of CRISPR/Cas9 by novel strategies for gene therapy. Chembiochem. 2018. https://doi.org/10.1002/cbic.201800629.

  15. Li X, Aghaamoo M, Liu S, Lee DH, Lee AP. Lipoplex-mediated single-cell transfection via droplet microfluidics. Small. 2018;14:e1802055. https://doi.org/10.1002/smll.201802055.

    Article  CAS  PubMed  Google Scholar 

  16. Hryhorowicz M, Grzeskowiak B, Mazurkiewicz N, Sledzinski P, Lipinski D, Slomski R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol Biotechnol. 2019;61:173–80. https://doi.org/10.1007/s12033-018-0145-9.

    Article  CAS  PubMed  Google Scholar 

  17. Katrekar D, Moreno AM, Chen G, Worlikar A, Mali P. Oligonucleotide conjugated multi-functional adeno-associated viruses. Sci Rep. 2018;8:3589. https://doi.org/10.1038/s41598-018-21742-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia L, Bunuales M, Duzgunes N, Tros de Ilarduya C. Serum-resistant lipopolyplexes for gene delivery to liver tumour cells. Eur J Pharmaceut Biopharmaceut. 2007;67:58–66. https://doi.org/10.1016/j.ejpb.2007.01.005.

    Article  CAS  Google Scholar 

  19. Foglieni C, Bragonzi A, Cortese M, Cantu L, Boletta A, Chiossone I, et al. Glomerular filtration is required for transfection of proximal tubular cells in the rat kidney following injection of DNA complexes into the renal artery. Gene Ther. 2000;7:279–85. https://doi.org/10.1038/sj.gt.3301092.

    Article  CAS  PubMed  Google Scholar 

  20. Fenske DB, MacLachlan I, Cullis PR. Long-circulating vectors for the systemic delivery of genes. Curr Opin Mol Ther. 2001;3:153–8.

    CAS  PubMed  Google Scholar 

  21. Liu Q, Zhao K, Wang C, Zhang Z, Zheng C, Zhao Y, et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv Sci. 2019;6:1801423. https://doi.org/10.1002/advs.201801423.

    Article  CAS  Google Scholar 

  22. Zheng H, Mortensen LJ, Ravichandran S, Bentley K, DeLouise LA. Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J Biomed Nanotechnol. 2017;13:155–66.

    Article  CAS  Google Scholar 

  23. Zhao Y, Wang W, Guo S, Wang Y, Miao L, Xiong Y, et al. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat Commun. 2016;7:11822. https://doi.org/10.1038/ncomms11822.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharmaceut Biopharmaceut. 2013;85:427–43. https://doi.org/10.1016/j.ejpb.2013.07.002.

    Article  CAS  Google Scholar 

  25. Huang JL, Chen HZ, Gao XL. Lipid-coated calcium phosphate nanoparticle and beyond: a versatile platform for drug delivery. J Drug Target. 2018;26:398–406. https://doi.org/10.1080/1061186X.2017.1419360.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou W, Cui H, Ying L, Yu XF. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew Chem. 2018;57:10268–72. https://doi.org/10.1002/anie.201806941.

    Article  CAS  Google Scholar 

  27. Haider M, Hatefi A, Ghandehari H. Recombinant polymers for cancer gene therapy: a minireview. J Control Release. 2005;109:108–19. https://doi.org/10.1016/j.jconrel.2005.09.018.

    Article  CAS  PubMed  Google Scholar 

  28. Ramanagoudr-Bhojappa R, Carrington B, Ramaswami M, Bishop K, Robbins GM, Jones M, et al. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility. PLoS Genet. 2018;14:e1007821. https://doi.org/10.1371/journal.pgen.1007821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettinger T, Tranquart F. Design of microbubbles for gene/drug delivery. Adv Exp Med Biol. 2016;880:191–204. https://doi.org/10.1007/978-3-319-22536-4_11.

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Ahn HJ. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery carrier for ovarian cancer therapy. Biochem Biophys Res Commun. 2018;503:1716–22. https://doi.org/10.1016/j.bbrc.2018.07.104.

    Article  CAS  PubMed  Google Scholar 

  31. Kim BK, Hwang GB, Seu YB, Choi JS, Jin KS, Doh KO. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim. Biophys. Acta. 2015;1848:1996–2001. https://doi.org/10.1016/j.bbamem.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  32. Jo DH, Koo T, Cho CS, Kim JH, Kim JS, Kim JH. Long-term effects of in vivo genome editing in the mouse retina using Campylobacter jejuni Cas9 expressed via adeno-associated virus. Mol. Ther. 2018. https://doi.org/10.1016/j.ymthe.2018.10.009.

  33. Farhood H, Gao X, Son K, Yang YY, Lazo JS, Huang L, et al. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann NY Acad Sci. 1994;716:23–34. discussion-5.

    Article  CAS  Google Scholar 

  34. Campbell LA, Coke LM, Richie CT, Fortuno LV, Park AY, Harvey BK. Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol Ther. 2018. https://doi.org/10.1016/j.ymthe.2018.10.002.

  35. Ruponen M, Yla-Herttuala S, Urtti A. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta. 1999;1415:331–41. https://doi.org/10.1016/s0005-2736(98)00199-0.

    Article  CAS  PubMed  Google Scholar 

  36. Bouxsein NF, McAllister CS, Ewert KK, Samuel CE, Safinya CR. Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA. Biochemistry. 2007;46:4785–92. https://doi.org/10.1021/bi062138l.

    Article  CAS  PubMed  Google Scholar 

  37. Gurtovenko AA, Miettinen M, Karttunen M, Vattulainen I. Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. J Phys Chem B. 2005;109:21126–34. https://doi.org/10.1021/jp053667m.

    Article  CAS  PubMed  Google Scholar 

  38. Valero L, Alhareth K, Espinoza Romero J, Viricel W, Leblond J, Chissey A, et al. Liposomes as gene delivery vectors for human placental cells. Molecules. 2018;23. https://doi.org/10.3390/molecules23051085.

  39. Turetskiy EA, Koloskova OO, Nosova AS, Shilovskiy IP, Sebyakin YL, Khaitov MR. Physicochemical properties of lipopeptide-based liposomes and theircomplexes with siRNA. Biomed Khim. 2017;63:472–5. https://doi.org/10.18097/PBMC20176305472.

    Article  CAS  PubMed  Google Scholar 

  40. Monpara J, Velga D, Verma T, Gupta S, Vavia P. Cationic cholesterol derivative efficiently delivers the genes: in silico and in vitro studies. Drug Deliv Transl Res. 2019;9:106–22. https://doi.org/10.1007/s13346-018-0571-z

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release. 2004;100:165–80. https://doi.org/10.1016/j.jconrel.2004.08.019.

    Article  CAS  PubMed  Google Scholar 

  42. Wong FM, MacAdam SA, Kim A, Oja C, Ramsay EC, Bally MB. A lipid-based delivery system for antisense oligonucleotides derived from a hydrophobic complex. J Drug Target. 2002;10:615–23. https://doi.org/10.1080/1061186021000066246.

    Article  CAS  PubMed  Google Scholar 

  43. Mkhwanazi NK, de Koning CB, van Otterlo WAL, Ariatti M, Singh M. PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor. Z Naturforsch C. 2017;72:293–301. https://doi.org/10.1515/znc-2016-0172.

    Article  CAS  PubMed  Google Scholar 

  44. Kazemi Oskuee R, Mahmoudi A, Gholami L, Rahmatkhah A, Malaekeh-Nikouei B. Cationic liposomes modified with polyallylamine as a gene carrier: preparation, characterization and transfection efficiency evaluation. Adv Pharm Bull. 2016;6:515–20. https://doi.org/10.15171/apb.2016.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hattori Y, Shimizu S, Ozaki KI, Onishi H. Effect of cationic lipid type in folate-PEG-modified cationic liposomes on folate receptor-mediated siRNA transfection in tumor cells. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11040181.

  46. Digiacomo L, Palchetti S, Pozzi D, Amici A, Caracciolo G, Marchini C. Cationic lipid/DNA complexes manufactured by microfluidics and bulk self-assembly exhibit different transfection behavior. Biochem Biophys Res Commun. 2018;503:508–12. https://doi.org/10.1016/j.bbrc.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  47. Constantinescu CA, Fuior EV, Rebleanu D, Deleanu M, Simion V, Voicu G, et al. Targeted transfection using PEGylated cationic liposomes directed towards P-Selectin increases siRNA delivery into activated endothelial cells. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11010047.

  48. Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. ‘Nano-in-nano’ hybrid liposomes increase target specificity and gene silencing efficiency in breast cancer induced SCID mice. Eur J Pharmaceut Biopharmaceut. 2017;119:96–106. https://doi.org/10.1016/j.ejpb.2017.06.006.

    Article  CAS  Google Scholar 

  49. Bessodes M, Dhotel H, Mignet N. Lipids for nucleic acid delivery: cationic or neutral lipoplexes, synthesis, and particle formation. Methods Mol Biol. 2019;1943:123–39. https://doi.org/10.1007/978-1-4939-9092-4_8.

    Article  CAS  PubMed  Google Scholar 

  50. Balbino TA, Serafin JM, Radaic A, de Jesus MB, de la Torre LG. Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids Surf B Biointerfaces. 2017;152:406–13. https://doi.org/10.1016/j.colsurfb.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

  51. Abu Lila AS, Ishida T. Anti-PEG IgM production via a PEGylated nanocarrier system for nucleic acid delivery. Methods Mol Biol. 2019;1943:333–46. https://doi.org/10.1007/978-1-4939-9092-4_22.

    Article  CAS  PubMed  Google Scholar 

  52. Zoephel J, Dwarakanath S, Richter H, Plagens A, Randau L. Substrate generation for endonucleases of CRISPR/cas systems. J Vis Exp. 2012; https://doi.org/10.3791/4277.

  53. Xu M, Xie YA, Abouzeid H, Gordon CT, Fiorentino A, Sun Z, et al. Mutations in the spliceosome component CWC27 cause retinal degeneration with or without additional developmental anomalies. Am J Hum Genet. 2017;100:592–604. https://doi.org/10.1016/j.ajhg.2017.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, et al. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Rep. 2015;13:2425–39. https://doi.org/10.1016/j.celrep.2015.11.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roman E, Coman I, Prieto D, Alonso-Monge R, Pla J. Implementation of a CRISPR-based system for gene regulation in Candida albicans. mSphere. 2019;4. https://doi.org/10.1128/mSphere.00001-19.

  56. Richter H, Randau L, Plagens A. Exploiting CRISPR/Cas: interference mechanisms and applications. Int J Mol Sci. 2013;14:14518–31. https://doi.org/10.3390/ijms140714518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plagens A, Tripp V, Daume M, Sharma K, Klingl A, Hrle A, et al. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res. 2014;42:5125–38. https://doi.org/10.1093/nar/gku120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol. 2012;194:2491–500. https://doi.org/10.1128/JB.00206-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Yang T, Yu Y, Shi N, Yang L, Glass Z, et al. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials. 2018;178:652–62. https://doi.org/10.1016/j.biomaterials.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Li AC, Xu Q. Intracellular delivery of his-tagged genome-editing proteins enabled by nitrilotriacetic acid-containing lipidoid nanoparticles. Adv Health Mater. 2019;8:e1800996. https://doi.org/10.1002/adhm.201800996.

    Article  CAS  Google Scholar 

  61. Li Y, Bolinger J, Yu Y, Glass Z, Shi N, Yang L, et al. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci. 2019;7:596–606. https://doi.org/10.1039/c8bm00637g.

    Article  CAS  PubMed  Google Scholar 

  62. Luque-Caballero G, Maldonado-Valderrama J, Quesada-Perez M, Martin-Molina A. Interaction of DNA with likely-charged lipid monolayers: an experimental study. Colloids Surf B Biointerfaces. 2019;178:170–6. https://doi.org/10.1016/j.colsurfb.2019.02.058.

    Article  CAS  PubMed  Google Scholar 

  63. Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR. New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid-DNA complexes for gene delivery. J Gene Med. 2005;7:739–48. https://doi.org/10.1002/jgm.717.

    Article  CAS  PubMed  Google Scholar 

  64. Plevock KM, Galletta BJ, Slep KC, Rusan NM. Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells. PLoS ONE. 2015;10:e0144174. https://doi.org/10.1371/journal.pone.0144174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos Trans A Math Phys Eng Sci. 2016;374. https://doi.org/10.1098/rsta.2015.0129.

  66. Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, et al. The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Front Plant Sci. 2017;8:1639. https://doi.org/10.3389/fpls.2017.01639.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wong FM, Reimer DL, Bally MB. Cationic lipid binding to DNA: characterization of complex formation. Biochemistry. 1996;35:5756–63. https://doi.org/10.1021/bi952847r.

    Article  CAS  PubMed  Google Scholar 

  68. Rehman Z, Sjollema KA, Kuipers J, Hoekstra D, Zuhorn IS. Nonviral gene delivery vectors use syndecan-dependent transport mechanisms in filopodia to reach the cell surface. ACS Nano. 2012;6:7521–32. https://doi.org/10.1021/nn3028562.

    Article  CAS  Google Scholar 

  69. Barbosa MV, Monteiro LO, Carneiro G, Malagutti AR, Vilela JM, Andrade MS, et al. Experimental design of a liposomal lipid system: a potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces. 2015;136:553–61. https://doi.org/10.1016/j.colsurfb.2015.09.055.

    Article  CAS  PubMed  Google Scholar 

  70. Ashizawa AT, Cortes J. Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01. Expert Opin Drug Deliv. 2015;12:1107–20. https://doi.org/10.1517/17425247.2015.996545.

    Article  CAS  PubMed  Google Scholar 

  71. Ariatti M. Liposomal formulation of monovalent cholesteryl cytofectins with acyclic head groups and gene delivery: a systematic review. Curr Pharm Biotechnol. 2015;16:871–81.

    Article  CAS  Google Scholar 

  72. Andey T, Bora-Singhal N, Chellappan SP, Singh M. Cationic lipoplexes for treatment of cancer stem cell-derived murine lung tumors. Nanomedicine. 2019;18:31–43. https://doi.org/10.1016/j.nano.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmad MU, Ali SM, Ahmad A, Sheikh S, Chen P, Ahmad I. Carbohydrate mediated drug delivery: synthesis and characterization of new lipid-conjugates. Chem Phys Lipids. 2015;186:30–8. https://doi.org/10.1016/j.chemphyslip.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Rajala A, Rajala RV. Lipid nanoparticles for ocular gene delivery. J Funct Biomater. 2015;6:379–94. https://doi.org/10.3390/jfb6020379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen KY, Liu HY, Li HJ, Wu CC, Liou GG, Chang YC, et al. A novel liposomal recombinant lipoimmunogen enhances anti-tumor immunity. J Control Release. 2016;233:57–63. https://doi.org/10.1016/j.jconrel.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  76. Li Y, Tang C, Zhang E, Yang L. Electrostatically entrapped colistin liposomes for the treatment of Pseudomonas aeruginosa infection. Pharm Dev Technol. 2017;22:436–44. https://doi.org/10.1080/10837450.2016.1228666.

    Article  CAS  PubMed  Google Scholar 

  77. Du B, Tian L, Gu X, Li D, Wang E, Wang J. Anionic lipid, pH-sensitive liposome-gold nanoparticle hybrids for gene delivery—quantitative research of the mechanism. Small. 2015;11:2333–40. https://doi.org/10.1002/smll.201402470.

    Article  CAS  PubMed  Google Scholar 

  78. Barran-Berdon AL, Aicart E, Junquera E. Anionic/zwitterionic lipid-based gene vectors of pDNA. Methods Mol Biol. 2016;1445:45–61. https://doi.org/10.1007/978-1-4939-3718-9_4.

    Article  CAS  PubMed  Google Scholar 

  79. Song F, Sakurai N, Okamoto A, Koide H, Oku N, Dewa T, et al. Design of a novel PEGylated liposomal vector for systemic delivery of sirna to solid tumors. Biol Pharm Bull. 2019;42:996–1003. https://doi.org/10.1248/bpb.b19-00032.

    Article  CAS  PubMed  Google Scholar 

  80. Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep. 2018;8:9410. https://doi.org/10.1038/s41598-018-27400-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Medchemcomm. 2019;10:369–77. https://doi.org/10.1039/c8md00515j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lu X, Zhang K. PEGylation of therapeutic oligonucletides: From linear to highly branched PEG architectures. Nano Res. 2018;11:5519–34. https://doi.org/10.1007/s12274-018-2131-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ilves M, Kinaret PAS, Ndika J, Karisola P, Marwah V, Fortino V, et al. Surface PEGylation suppresses pulmonary effects of CuO in allergen-induced lung inflammation. Part Fibre Toxicol. 2019;16:28. https://doi.org/10.1186/s12989-019-0309-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of (6)(4)Cu-Au alloy nanoclusters. Nanoscale. 2014;6:13501–9. https://doi.org/10.1039/c4nr04569f.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang YY, Chen JM. [Existing problems and strategies in liposome-mediated nucleic acid delivery]. Yao Xue Xue Bao. 2011;46:261–8.

    CAS  PubMed  Google Scholar 

  86. Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials. 2016;89:89–97. https://doi.org/10.1016/j.biomaterials.2016.02.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ozcan I, Segura-Sanchez F, Bouchemal K, Sezak M, Ozer O, Guneri T, et al. Pegylation of poly(gamma-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats. Int J Nanomed. 2010;5:1103–11. https://doi.org/10.2147/IJN.S15493.

    Article  CAS  Google Scholar 

  88. Nissinen T, Nakki S, Laakso H, Kuciauskas D, Kaupinis A, Kettunen MI, et al. Tailored dual PEGylation of inorganic porous nanocarriers for extremely long blood circulation in vivo. ACS Appl Mater interfaces. 2016;8:32723–31. https://doi.org/10.1021/acsami.6b12481.

    Article  CAS  PubMed  Google Scholar 

  89. Lee KL, Shukla S, Wu M, Ayat NR, El Sanadi CE, Wen AM, et al. Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater. 2015;19:166–79. https://doi.org/10.1016/j.actbio.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123:3061–73. https://doi.org/10.1172/JCI66895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fischer D, Osburg B, Petersen H, Kissel T, Bickel U. Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metab Dispos. 2004;32:983–92.

    CAS  PubMed  Google Scholar 

  92. Cheng SH, Li FC, Souris JS, Yang CS, Tseng FG, Lee HS, et al. Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano. 2012;6:4122–31. https://doi.org/10.1021/nn300558p.

    Article  CAS  PubMed  Google Scholar 

  93. Cavadas M, Gonzalez-Fernandez A, Franco R. Pathogen-mimetic stealth nanocarriers for drug delivery: a future possibility. Nanomedicine. 2011;7:730–43. https://doi.org/10.1016/j.nano.2011.04.006.

    Article  CAS  PubMed  Google Scholar 

  94. Beck-Broichsitter M, Nicolas J, Couvreur P. Design attributes of long-circulating polymeric drug delivery vehicles. Eur J Pharmaceut Biopharmaceut. 2015;97:304–17. https://doi.org/10.1016/j.ejpb.2015.03.033.

    Article  CAS  Google Scholar 

  95. Azevedo EG, Ribeiro RR, da Silva SM, Ferreira CS, de Souza LE, Ferreira AA, et al. Mixed formulation of conventional and pegylated liposomes as a novel drug delivery strategy for improved treatment of visceral leishmaniasis. Expert Opin drug Deliv. 2014;11:1551–60. https://doi.org/10.1517/17425247.2014.932347.

    Article  CAS  PubMed  Google Scholar 

  96. Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788:2259–66. https://doi.org/10.1016/j.bbamem.2009.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia Y, Tian J, Chen X. Effect of surface properties on liposomal siRNA delivery. Biomaterials. 2016;79:56–68. https://doi.org/10.1016/j.biomaterials.2015.11.056.

    Article  CAS  PubMed  Google Scholar 

  98. Nogueira E, Freitas J, Loureiro A, Nogueira P, Gomes AC, Preto A, et al. Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids Surf B Biointerfaces. 2017;155:459–65. https://doi.org/10.1016/j.colsurfb.2017.04.023.

    Article  CAS  PubMed  Google Scholar 

  99. Mignet N, Scherman D. Anionic pH-sensitive lipoplexes. Methods Mol Biol. 2017;1522:227–36. https://doi.org/10.1007/978-1-4939-6591-5_17.

    Article  CAS  PubMed  Google Scholar 

  100. Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, et al. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-gamma gene lipoplex for efficient cancer immunotherapy. Biomaterials. 2015;67:214–24. https://doi.org/10.1016/j.biomaterials.2015.07.031.

    Article  CAS  PubMed  Google Scholar 

  101. Yao Y, Su Z, Liang Y, Zhang N. pH-sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomed. 2015;10:6185–97. https://doi.org/10.2147/IJN.S90524.

    Article  CAS  Google Scholar 

  102. Liu Q, Su RC, Yi WJ, Zheng LT, Lu SS, Zhao ZG. pH and reduction dual-responsive dipeptide cationic lipids with alpha-tocopherol hydrophobic tail for efficient gene delivery. Eur J Med Chem. 2017;129:1–11. https://doi.org/10.1016/j.ejmech.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  103. Li W, Huang Z, MacKay JA, Grube S, Szoka FC,Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J Gene Med. 2005;7:67–79. https://doi.org/10.1002/jgm.634.

    Article  CAS  PubMed  Google Scholar 

  104. Cheung CY, Murthy N, Stayton PS, Hoffman AS. A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug Chem. 2001;12:906–10.

    Article  CAS  Google Scholar 

  105. Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA. pH-sensitive cationic liposomes: a new synthetic virus-like vector. Nat Biotechnol. 1996;14:760–4. https://doi.org/10.1038/nbt0696-760.

    Article  CAS  PubMed  Google Scholar 

  106. Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. PEGylation of lipoplexes: the right balance between cytotoxicity and siRNA effectiveness. Eur J Pharm Sci. 2016;93:493–503. https://doi.org/10.1016/j.ejps.2016.08.058.

    Article  CAS  PubMed  Google Scholar 

  107. Haghiralsadat F, Amoabediny G, Naderinezhad S, Forouzanfar T, Helder MN, Zandieh-Doulabi B. Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(supp1):684–92. https://doi.org/10.1080/21691401.2018.1434533.

    Article  CAS  PubMed  Google Scholar 

  108. Nunes SS, Fernandes RS, Cavalcante CH, da Costa Cesar I, Leite EA, Lopes SCA, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv Transl Res. 2019;9:123–30. https://doi.org/10.1007/s13346-018-0583-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nordling-David MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, et al. Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release. 2017;261:138–46. https://doi.org/10.1016/j.jconrel.2017.06.028.

    Article  CAS  PubMed  Google Scholar 

  110. Naicker K, Ariatti M, Singh M. PEGylated galactosylated cationic liposomes for hepatocytic gene delivery. Colloids Surf B Biointerfaces. 2014;122:482–90. https://doi.org/10.1016/j.colsurfb.2014.07.010.

    Article  CAS  PubMed  Google Scholar 

  111. El Kechai N, Geiger S, Fallacara A, Canero Infante I, Nicolas V, Ferrary E, et al. Mixtures of hyaluronic acid and liposomes for drug delivery: phase behavior, microstructure and mobility of liposomes. Int J Pharm. 2017;523:246–59. https://doi.org/10.1016/j.ijpharm.2017.03.029.

    Article  CAS  PubMed  Google Scholar 

  112. Dakwar GR, Zagato E, Delanghe J, Hobel S, Aigner A, Denys H, et al. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater. 2014;10:2965–75. https://doi.org/10.1016/j.actbio.2014.03.012.

    Article  CAS  PubMed  Google Scholar 

  113. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130:238–45. https://doi.org/10.1016/j.jconrel.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  114. Dingels C, Muller SS, Steinbach T, Tonhauser C, Frey H. Universal concept for the implementation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s. Biomacromolecules. 2013;14:448–59. https://doi.org/10.1021/bm3016797.

    Article  CAS  PubMed  Google Scholar 

  115. Ye R, Pi M, Cox JV, Nishimoto SK, Quarles LD. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J Exp Clin Cancer Res. 2017;36:90. https://doi.org/10.1186/s13046-017-0561-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song HY, Chien CS, Yarmishyn AA, Chou SJ, Yang YP, Wang ML, et al. Generation of GLA-knockout human embryonic stem cell lines to model autophagic dysfunction and exosome secretion in Fabry disease-associated hypertrophic cardiomyopathy. Cells. 2019;8. https://doi.org/10.3390/cells8040327.

  117. Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Langst G, et al. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res. 2019;47:e55. https://doi.org/10.1093/nar/gkz137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Watanabe S, Sakurai T, Nakamura S, Miyoshi K, Sato M. The combinational use of CRISPR/Cas9 and targeted toxin technology enables efficient isolation of bi-allelic knockout non-human mammalian clones. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19041075.

  119. Sweeney CL, Merling RK, De Ravin SS, Choi U, Malech HL. Gene editing in chronic granulomatous disease. Methods Mol Biol. 2019;1982:623–65. https://doi.org/10.1007/978-1-4939-9424-3_36.

    Article  CAS  PubMed  Google Scholar 

  120. Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, et al. A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. MAbs. 2019;11:884–98. https://doi.org/10.1080/19420862.2019.1618673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Woll S, Schiller S, Bachran C, Swee LK, Scherliess R. Pentaglycine lipid derivates—rp-HPLC analytics for bioorthogonal anchor molecules in targeted, multiple-composite liposomal drug delivery systems. Int J Pharm. 2018;547:602–10. https://doi.org/10.1016/j.ijpharm.2018.05.052.

    Article  CAS  PubMed  Google Scholar 

  122. Ishitsuka T, Akita H, Harashima H. Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung. J Control Release. 2011;154:77–83. https://doi.org/10.1016/j.jconrel.2011.05.012.

    Article  CAS  PubMed  Google Scholar 

  123. Frisch B, Carriere M, Largeau C, Mathey F, Masson C, Schuber F, et al. A new triantennary galactose-targeted PEGylated gene carrier, characterization of its complex with DNA, and transfection of hepatoma cells. Bioconjug Chem. 2004;15:754–64. https://doi.org/10.1021/bc049971k.

    Article  CAS  PubMed  Google Scholar 

  124. Anwer K, Kao G, Rolland A, Driessen WH, Sullivan SM. Peptide-mediated gene transfer of cationic lipid/plasmid DNA complexes to endothelial cells. J Drug Target. 2004;12:215–21. https://doi.org/10.1080/10611860410001724468.

    Article  CAS  PubMed  Google Scholar 

  125. Resnier P, LeQuinio P, Lautram N, Andre E, Gaillard C, Bastiat G, et al. Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnol J. 2014;9:1389–401. https://doi.org/10.1002/biot.201400162.

    Article  CAS  PubMed  Google Scholar 

  126. Ando H, Asai T, Koide H, Okamoto A, Maeda N, Tomita K, et al. Advanced cancer therapy by integrative antitumor actions via systemic administration of miR-499. J Control Release. 2014;181:32–9. https://doi.org/10.1016/j.jconrel.2014.02.019.

    Article  CAS  PubMed  Google Scholar 

  127. Hu Y, Li K, Wang L, Yin S, Zhang Z, Zhang Y. Pegylated immuno-lipopolyplexes: a novel non-viral gene delivery system for liver cancer therapy. J Control Release. 2010;144:75–81. https://doi.org/10.1016/j.jconrel.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  128. Harvie P, Dutzar B, Galbraith T, Cudmore S, O’Mahony D, Anklesaria P, et al. Targeting of lipid-protamine-DNA (LPD) lipopolyplexes using RGD motifs. J Liposome Res. 2003;13:231–47. https://doi.org/10.1081/LPR-120026389.

    Article  CAS  PubMed  Google Scholar 

  129. Reddy JA, Dean D, Kennedy MD, Low PS. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J Pharm Sci. 1999;88:1112–8. https://doi.org/10.1021/js990169e.

    Article  CAS  PubMed  Google Scholar 

  130. Meszaros M, Porkolab G, Kiss L, Pilbat AM, Kota Z, Kupihar Z, et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Eur J Pharm Sci. 2018;123:228–40. https://doi.org/10.1016/j.ejps.2018.07.042.

    Article  CAS  PubMed  Google Scholar 

  131. Meerovich I, Koshkaryev A, Thekkedath R, Torchilin VP. Screening and optimization of ligand conjugates for lysosomal targeting. Bioconjug Chem. 2011;22:2271–82. https://doi.org/10.1021/bc200336j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kostarelos K, Emfietzoglou D, Papakostas A, Yang WH, Ballangrud A, Sgouros G. Binding and interstitial penetration of liposomes within avascular tumor spheroids. Int J Cancer. 2004;112:713–21. https://doi.org/10.1002/ijc.20457.

    Article  CAS  PubMed  Google Scholar 

  133. Demirgoz D, Garg A, Kokkoli E. PR_b-targetedPEGylated liposomes for prostate cancer therapy. Langmuir. 2008;24:13518–24. https://doi.org/10.1021/la801961r.

    Article  CAS  PubMed  Google Scholar 

  134. Yang MM, Wilson WR, Wu Z. pH-sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm. 2017;516:323–33. https://doi.org/10.1016/j.ijpharm.2016.11.041.

    Article  CAS  PubMed  Google Scholar 

  135. Shi M, Zhao X, Zhang J, Pan S, Yang C, Wei Y, et al. pH-responsive hybrid nanoparticle with enhanced dissociation characteristic for siRNA delivery. Int J Nanomed. 2018;13:6885–902. https://doi.org/10.2147/IJN.S180119.

    Article  CAS  Google Scholar 

  136. Schmidt ST, Olsen CL, Franzyk H, Worzner K, Korsholm KS, Rades T, et al. Comparison of two different PEGylation strategies for the liposomal adjuvant CAF09: Towards induction of CTL responses upon subcutaneous vaccine administration. Eur J Pharmaceut Biopharmaceut. 2019;140:29–39. https://doi.org/10.1016/j.ejpb.2019.04.020.

    Article  CAS  Google Scholar 

  137. Eriksen AZ, Brewer J, Andresen TL, Urquhart AJ. The diffusion dynamics of PEGylated liposomes in the intact vitreous of the ex vivo porcine eye: a fluorescence correlation spectroscopy and biodistribution study. Int J Pharm. 2017;522:90–7. https://doi.org/10.1016/j.ijpharm.2017.03.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Grant nos. 81602295 to Shuai Zhen). This study was supported by grants from Key Research and Development Program of Shaanxi Province of China(2017ZDXM‐SF‐24‐1).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. supervised the project. S.Z. and X.L. conceived the idea and cowrote the manuscript. S.Z. provided technical advice and helped edit the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, S., Li, X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther 27, 515–527 (2020). https://doi.org/10.1038/s41417-019-0141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0141-7

This article is cited by

Search

Quick links