Skip to main content
Log in

Synthesis, Crystal Structure, Anion Sensing Applications and DFT Studies of (E)-2-[(3,5-Bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

We report the synthesis and characterization, colorimetric anion sensors properties, density functional theory (DFT) calculation studies of a Schiff base (E)-2-[(3,5-bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol. The molecular structure of the title compound was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using DFT. The experimental and calculated data (using DFT) of the title compound have been compared. To investigate the tautomeric stability, some properties such as total energy, HOMO and LUMO energies, the chemical hardness (η), the ionization potential, the electron affinity, the absolute electronegativity (χ), the absolute softness (σ) of the compound were obtained at B3LYP/6–311++G(d,p) level in the gas phase and solvent phase. The calculated results showed that the enol-imine form of the compound was more favorite than keto-amine form. The colorimetric response of the Schiff base receptors in DMSO was investigated.

Graphical Abstract

Synthesis and characterization, colorimetric anion sensors properties and density functional theory (DFT) calculation studies of a Schiff base (E)-2-[(3,5-bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol have been reported in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghasemi O, Danaee I, Rashed GR, RashvandAvei M, Maddahy MH (2013) J Cent South Univ 20(2):301–311

    CAS  Google Scholar 

  2. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F (2005) Coord Chem Rev 249(24):3055–3074

    CAS  Google Scholar 

  3. Yang CJ, Jenekhe SA (1995) Macromolecules 28(4):1180–1196

    CAS  Google Scholar 

  4. Destri S, Khotina IA, Porzio W (1998) Macromolecules 31(4):1079–1086

    CAS  Google Scholar 

  5. Zeyrek CT, Elmali A, Elerman Y (2005) Z Naturforsch B 60(5):520–526

    CAS  Google Scholar 

  6. Larkin DR (1990) J Org Chem 55(5):1563–1568

    CAS  Google Scholar 

  7. Vanco J, Svajlenova O, Racanska E, Muselik J, Valentova J (2004) J Trace Elem Med Biol 18(2):155–161

    CAS  PubMed  Google Scholar 

  8. Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) J Am Chem Soc 124(23):6626–6635

    CAS  PubMed  Google Scholar 

  9. Ramnauth R, Al-Juaid S, Motevalli M, Parkin BC, Sullivan AC (2004) Inorg Chem 43(13):4072–4079

    CAS  PubMed  Google Scholar 

  10. Raman N, Thangaraja C (2005) Pol J Chem 79(7):1123–1134

    CAS  Google Scholar 

  11. Yang DL, Fokas D, Li JZ, Yu LB, Baldino CM (2005) Synthesis 2005:47–56

    Google Scholar 

  12. Zhou Y, Zhang JF, Yoon J (2014) Chem Rev 114(10):5511–5571

    CAS  PubMed  Google Scholar 

  13. Hu BB, Lu P, Wang YG (2013) New J Chem 37(6):1645–1653

    CAS  Google Scholar 

  14. Mahanta SP, Kumar BS, Baskaran S, Sivasankar C, Pandet PK (2012) Org Lett 14(2):548–551

    CAS  PubMed  Google Scholar 

  15. Dalapati S, Jana S, Guchhait N (2014) Spectrochim Acta A 129:499–508

    CAS  Google Scholar 

  16. Kumar D, Thomas KRJ (2014) RSC Adv 4(99):56466–56474

    CAS  Google Scholar 

  17. Li YP, Lin H, Cai ZS, Lin HK (2011) Mini-Rev Org Chem 8(1):25–30

    Google Scholar 

  18. Sharma D, Mistry AR, Bera RK, Sahoo SK (2013) Supramol Chem 25(4):212–220

    CAS  Google Scholar 

  19. Guha S, Saha S (2010) J Am Chem Soc 132(50):17674–17677

    CAS  PubMed  Google Scholar 

  20. Hadjoudis E, Vittorakis M, Moustakalimavridis I (1987) Tetrahedron 43(7):1345–1360

    CAS  Google Scholar 

  21. Xu XX, You XZ, Sun ZF (1994) Acta Crystallogr C 50:1169–1171

    Google Scholar 

  22. Bouas-Laurent HDAH (1990) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  23. Schaumburg K, Goulle C, Roth S, Byrne H, Hagen S, Poplawsky J, Brufeldt K, Beechgard K, Pjornholm T, Fredericksen P, Jörgensen M, Lerstrup K, Sommer-Larsen P, Goscinsky O (1999) Nanostructure based molecular materials. Wiley, Weinheim

    Google Scholar 

  24. Yıldız M, Unver H, Erdener D, Ocak N, Erdonmez A, Durlu TN (2006) Cryst Res Technol 41(6):600–606

    Google Scholar 

  25. Unver H, Durlu TN (2003) J Mol Struct 655(3):369–374

    CAS  Google Scholar 

  26. Elmali A, Elerman Y, Zeyrek CT (1998) J Mol Struct 443(1–3):123–130

    CAS  Google Scholar 

  27. Elmali A, Kabak M, Kavlakoglu E, Elerman Y, Durlu TN (1999) J Mol Struct 510(1–3):207–214

    CAS  Google Scholar 

  28. Unver H, Kabak M, Zengin DM, Durlu TN (2001) J Chem Crystallogr 31(4):203–209

    CAS  Google Scholar 

  29. Gavranic M, Kaitner B, Mestrovic E (1996) J Chem Crystallogr 26(1):23–28

    CAS  Google Scholar 

  30. Blagus A, Cincic D, Friscic T, Kaitner B, Stilinovic V (2010) Maced J Chem Chem Eng 29(2):117–138

    CAS  Google Scholar 

  31. Yıldız M, Kılıç Z, Hökelek T (1998) J Mol Struct 441(1):1–10

    Google Scholar 

  32. Unver H, Yıldız M, Zengin DM, Ozbey S, Kendi E (2001) J Chem Crystallogr 31(4):211–216

    CAS  Google Scholar 

  33. Unver H, Yıldız M (2010) Spectrosc Lett 43(2):114–121

    CAS  Google Scholar 

  34. Koll A, Rospenk M, Jagodzinska E, Dziembowska T (2000) J Mol Struct 552:193–204

    CAS  Google Scholar 

  35. Razakantoanina V, Phung NKP, Jaureguiberry G (2000) Parasitol Res 86(8):665–668

    CAS  PubMed  Google Scholar 

  36. Swaminathan J, Ramalingam M, Sethuraman V, Sundaraganesan N, Sebastian S, Kurt M (2010) Spectrochim Acta A 75(1):183–190

    CAS  Google Scholar 

  37. Sun YX, Hao QL, Yu ZX, Wei WX, Lu LD, Wang X (2009) Mol Phys 107(3):223–235

    CAS  Google Scholar 

  38. Yıldız M, Karpuz Ö, Zeyrek CT, Boyacıoğlu B, Dal H, Demir N, Yıldırım N, Ünver H (2015) J Mol Struct 1094:148–160

    Google Scholar 

  39. Barare B, Yıldız M, Alpaslan G, Dilek N, Ünver H, Tadesse S, Aslan K (2015) Sens Actuators B 215:52–61

    CAS  Google Scholar 

  40. Unver H, Yıldız M, Kiraz A, Iskeleli NO, Erdonmez A, Dulger B, Durlu TN (2006) J Chem Crystallogr 36(3):229–237

    Google Scholar 

  41. Cie S (2002) X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe&Cie, Darmstadt

    Google Scholar 

  42. Sheldrick GM (2008) Acta Crystallogr A A64:112–122

    Google Scholar 

  43. Sheldrick GM (2015) Acta Crystallogr C71(1):3–8

    Google Scholar 

  44. Farrugia LJ (1997) J Appl Crystallogr 30:565–565

    CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö. Foresman, JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  46. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem, Inc., Shawnee Mission

    Google Scholar 

  47. Charlotte FF (1987) Comput Phys Commun 43(3):355–365

    Google Scholar 

  48. Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89(4):2193–2218

    CAS  Google Scholar 

  49. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) J Comput Chem 4(3):294–301

    CAS  Google Scholar 

  50. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111(45):11683–11700

    CAS  Google Scholar 

  51. Ditchfield R (1972) J Chem Phys 56:5688

    CAS  Google Scholar 

  52. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    CAS  Google Scholar 

  53. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Google Scholar 

  54. Erich R, Gross EKU (1984) Phys Rev Lett 52(12):997–1000

    Google Scholar 

  55. Zeyrek CT, Dilek N, Yıldız M, Unver H (2014) Mol Phys 112(19):2557–2574

    CAS  Google Scholar 

  56. Dabbagh HA, Teimouri A, Chermahini AN, Shahraki M (2008) Spectrochim Acta A 69(2):449–459

    Google Scholar 

  57. Teimouri A, Chermahini AN, Taban K, Dabbagh HA (2009) Spectrochim Acta A 72(2):369–377

    Google Scholar 

  58. Silverstein RM, Webster FX (2003) Spectroscopic identification of organic compound, 6th edn. Willey, New York

    Google Scholar 

  59. Yildiz M, Kilic Z, Hokelek T (1998) J Mol Struct 441:1–10

    CAS  Google Scholar 

  60. Nazir H, Yildiz M, Yilmaz H, Tahir MN, Ulku D (2000) J Mol Struct 52:241–250

    Google Scholar 

  61. Yeap GY, Ha ST, Ishizawa N, Suda K, Boey PL, Mahmood WAK (2003) J Mol Struct 658:87–99

    CAS  Google Scholar 

  62. Zeyrek CT, Kocak SB, Unver H, Pektas S, Basterzi NS, Celik O (2015) J Mol Struct 1100:570–581

    CAS  Google Scholar 

  63. Yildiz M (2004) Spectrosc Lett 37(4):367–381

    CAS  Google Scholar 

  64. Noh JY, Hwang IH, Kim H, Song EJ, Kim KB, Kim C (2013) B Korean Chem Soc 34(7):1985–1989

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for the financial support of this work, grant number TÜBİTAK 115F253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celal Tuğrul Zeyrek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

. Comparison of the experimental and calculated FT-IR spectra of the investigated compounds: (a) Observed spectra; (b) Theoretical spectra at B3LYP/6-311++G(d,p) level. (TIF 663 KB)

Figure S2

. Correlation graphics of unscaled (calculated) and experimental frequencies of the title compound. (TIF 494 KB)

Figure S3

. The energy difference between the gas phase and solvent media and dipole moment for different solvent media. (TIF 492 KB)

Figure S4

. Molecular electrostatic potential (MEP) map calculated at B3LYP/6-311++G(d,p) level. (TIF 952 KB)

Figure S5

. UV-visible spectrum of the compound in DMSO solvent. (TIF 759 KB)

Figure S6

. Molecular orbital surfaces and energy levels for the HOMO, HOMO-1, LUMO, and LUMO+1 of the title compound computed at B3LYP/6-311++G(d,p) level (TIF 683 KB)

Supplementary material 7 (DOCX 24 KB)

Supplementary material 8 (DOCX 28 KB)

Supplementary material 9 (DOCX 16 KB)

Supplementary material 10 (DOCX 42 KB)

Supplementary material 11 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünver, H., Zeyrek, C.T., Boyacioglu, B. et al. Synthesis, Crystal Structure, Anion Sensing Applications and DFT Studies of (E)-2-[(3,5-Bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol. J Chem Crystallogr 49, 232–244 (2019). https://doi.org/10.1007/s10870-018-0758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0758-7

Keywords

Navigation