Skip to main content
Log in

Crystal Structures of Cobalt Sandwich Complexes in the η5-Cyclopentadienyl/η4-Cyclobutadiene and η5-Cyclopentadienyl/η4-Cyclopentadienone Families

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structures of six cobalt sandwich complexes—four in the η5-cyclopentadienyl/η4-cyclobutadiene family, two from the related η5-cyclopentadienyl/η4-cyclopentadienone family—are presented and discussed alongside related structural precedents. In each of the complexes an undecorated cyclopentadienyl ligand is present whereas the partner cyclobutadiene or cyclopentadienone ligand bears four identical aromatic substituents (phenyl, p-tolyl, p-fluorophenyl, 2-thienyl or 2,2′-bithienyl). This range of substituents allows for detailed structural comparison between members of the families of sandwich complexes presented here, and with previously reported structures.

Graphic Abstract

Crystal structures of members of the η5-cyclopentadienyl/η4-tetraarylcyclobutadiene (left) and η5-cyclopentadienyl/η5-cyclopentadienone (right) families of sandwich complexes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. One previously reported structure which has been excluded from Table 2 is the (η5–Cp)Co(η4–C4R4) complex where R = 4–(ethoxycarbonyl)phenyl (this structure, CCDC entry NEVCOG, was published alongside NEVCIA and NEVCUM) [20]. The X-ray crystal structure of this material reveals a packing mode in which extended columns of stacked sandwich complexes exhibit fourfold symmetry about a central axis. Furthermore, these stacks contain partial occupancy Co atoms on either side of the rings with occupancies of 79% and 21%. In essence, the sandwich complexes are disordered over two sites within these columns. The measured Co···Cp (centroid) distance for the major fraction is 1.63 Å with a corresponding Co···C4R4 distance of 1.79 Å (with a dihedral angle of 2°). Both of these distances are clearly incomparable with the other structures in Table 2 and provide the reason for exclusion from comparison. It should be noted that it is possible that this type of disorder is also present in the structure of NEVCIA (Co occupancies of 97% and 3%).

  2. For 1–3 ring designations proceed in numerical order as indicated by the labelled carbon attachment points in Figs. 1, 2 and 3; for 4 the individual thiophene rings are paired, 1 with 2 and so forth, according to the labelled sulfur atoms in Fig. 4. The dihedral angles between connected thiophene rings in 4 are also listed.

  3. There exists one other structure worthy of note (DAKJAA) that features a mixed superphane structure of CpCo-capped cyclobutadiene and cyclopentadienone rings [26]. However, the lack of any aryl substituents in this case limits useful comparison with either of the sets of structures in this work.

  4. In addition to variation in thienyl ring orientation with respect to the central cyclopentadienone ring, complex 6 (while presenting two unique molecules in the asymmetric unit) also displays the orientational disorder typical of thiophene rings: Ring 1, 55/45 (%) occupancy, ring 3, 70/30 occupancy, ring 4, 55/45 occupancy, ring 5, 85/15 occupancy, ring 7, 55/45 occupancy, and ring 8, 60/40 occupancy. The possibility exists that ring 6 (associated with S6) also possesses some minor disorder. The orientation of each disordered 2-thienyl ring in Fig. 6 is shown in the majority occupancy.

References

  1. Kealy T, Pauson P (1951) Nature 168:1039–1040

    Article  CAS  Google Scholar 

  2. Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) J Am Chem Soc 74:2125–2126

    Article  CAS  Google Scholar 

  3. Woodward RB, Rosenblum M, Whiting MC (1952) J Am Chem Soc 74:3458–3459

    Article  CAS  Google Scholar 

  4. Kumar D, Deb M, Singh J, Singh N, Keshav K, Elias AJ (2016) Coord Chem Rev 306:115–170

    Article  CAS  Google Scholar 

  5. Chiesi Villa A, Coghi L, Gaetani Manfredotti A, Guastini C (1974) Acta Cryst B30:2101–2112

    Article  Google Scholar 

  6. Uno M, Ando K, Komatsuzaki N, Tsuda T, Tanaka T, Sawada M, Takahashi S (1994) J Organomet Chem 473:303–311

    Article  CAS  Google Scholar 

  7. Ortin Y, Ahrenstorf K, O’Donohue P, Foede D, Müller-Bunz H, McArdle P, Manning AR, McGlinchey MJ (2004) J Organomet Chem 689:1657–1664

    Article  CAS  Google Scholar 

  8. Behrendt C, Dabek S, Heck J, Courtney D, Manning AR, McGlinchey MJ, Mueller-Bunz H, Ortin Y (2006) J Organomet Chem 691:1183–1196

    Article  CAS  Google Scholar 

  9. O’Donohue P, McAdam CJ, Courtney D, Ortin Y, Müller-Bunz H, Manning AR, McGlinchey MJ, Simpson J (2011) J Organomet Chem 696:1496–1509

    Article  Google Scholar 

  10. O’Donohue P, McAdam CJ, Courtney D, Ortin Y, Müller-Bunz H, Manning AR, McGlinchey MJ, Simpson J (2011) J Organomet Chem 696:1510–1527

    Article  Google Scholar 

  11. Courtney D, McAdam CJ, Manning AR, Müller-Bunz H, Ortin Y, Simpson J (2012) J Organomet Chem 705:7–22

    Article  CAS  Google Scholar 

  12. Singh N, Metla BPR, Elias AJ (2012) J Organomet Chem 717:99–107

    Article  CAS  Google Scholar 

  13. Dabek S, Prosenc MH, Heck J (2012) Organometallics 31:6911–6925

    Article  CAS  Google Scholar 

  14. Rausch MD, Westover GF, Mintz E, Reisner GM, Bernal I, Clearfield A, Troup JM (1979) Inorg Chem 18:2605–2615

    Article  CAS  Google Scholar 

  15. Elias AJ, Unpublished data (CCDC entry #1055241)

  16. Rausch MD, Genetti RA (1970) J Org Chem 35:3888–3897

    Article  CAS  Google Scholar 

  17. Harcourt EM, Yonis SR, Lynch DE, Hamilton DG (2008) Organometallics 27:1653–1656

    Article  CAS  Google Scholar 

  18. Bertrand G, Tortech L, Fichou D, Malacria M, Aubert C, Gandon V (2012) Organometallics 31:126–132

    Article  CAS  Google Scholar 

  19. Riley PE, Davis RE (1976) J Organomet Chem 113:157–166

    Article  CAS  Google Scholar 

  20. Harrison RM, Brotin T, Noll BC, Michl J (1997) Organometallics 16:3401–3412

    Article  CAS  Google Scholar 

  21. Waybright SM, McAlpine K, Laskoski M, Smith MD, Bunz UHF (2002) J Am Chem Soc 124:8661–8666

    Article  CAS  Google Scholar 

  22. Dabek S, Prosenc MH, Heck J (2007) J Organomet Chem 692:2216–2226

    Article  CAS  Google Scholar 

  23. O’Donohue P, Brusey SA, Seward CM, Ortin Y, Molloy BC, Müller-Bunz H, Manning AR, McGlinchey MJ (2009) J Organomet Chem 694:2536–2547

    Article  Google Scholar 

  24. Cremer D, Pople JA (1975) J Amer Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  25. Taylor CJ, Motevalli M, Richards CJ (2006) Organometallics 25:2899–2902

    Article  CAS  Google Scholar 

  26. Roers R, Rominger F, Gleiter R (1999) Tet Lett 40:3141–3144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grateful acknowledgment is made of the EPSRC National Crystallography Service (Southampton, UK and Station 9.8, Daresbury, UK) and the Donors of the American Chemical Society Petroleum Research Fund for support of this research (Award 45312-B3 to DGH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Hamilton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, D.E., Harcourt, E.M., Engle, J.T. et al. Crystal Structures of Cobalt Sandwich Complexes in the η5-Cyclopentadienyl/η4-Cyclobutadiene and η5-Cyclopentadienyl/η4-Cyclopentadienone Families. J Chem Crystallogr 50, 338–347 (2020). https://doi.org/10.1007/s10870-019-00806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00806-4

Keywords

Navigation