Skip to main content
Log in

Studies of Mixed Micellization Behavior of Promethazine Hydrochloride and Triton X-100 in the Presence of Additives Using Multiple Techniques

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present study, we have examined the mixed micellization behavior of promethazine hydrochloride (PMT) and the nonionic surfactant Triton X-100 mixtures at different mole fractions of TX-100 (α1) in aqueous solutions with and without additives (CTAB, glycine, vitamin-C and PVP) using conductometric, tensiometric and fluorescence techniques. PMT belongs to a class of amphiphilic drugs called phenothiazines and is used as an antihistamine, analgesic and sedative. Various parameters which include the ideal critical micelle concentration (cmcid), ideal micellar mole fraction, \(X_{1}^{\text{id}}\), of TX-100, micellar composition, \(X_{1}^{\text{mic}}\), of TX-100, interaction parameter (β), activity coefficients (\(f_{1}^{\text{mic}}\) and \(f_{2}^{\text{mic}}\)), thermodynamic parameters \(\left( {\Delta G_{\text{mic}}^{ 0} , \;\Delta G_{\text{ad}}^{0} \;{\text{and}}\;\Delta G_{\text{mic}}^{\text{E}} } \right)\) and interfacial parameters (Γmax, Amin, and Πcmc) have been calculated by using Clint’s and Rubingh’s models. In our study, we have found that the cmc < cmcid, β < 0 and \(f_{1}^{\text{mic}}\) and \(f_{2}^{\text{mic}}\) < 1; all the mixtures show synergism \(X_{1}^{\text{id}}\) as well as non-ideality. The values of \(\Delta G_{\text{ad}}^{0} > \Delta G_{\text{mic}}^{ 0}\) for all the systems indicate that adsorption phenomenon occurs primarily as compared to the micellization process. The negative values of \(\Delta G_{\text{mic}}^{\text{E}}\) for all α1 in the absence and presence of additives indicate greater stability of the micelles of mixtures than for the micelles of pure components. The interfacial parameters give information about the packing of amphiphilic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill, R.M., Ogino, K., Abe, M. (eds.): Mixed Surfactant Systems, Surfactant Science Series. Marcel Dekker, New York (1993)

    Google Scholar 

  2. Farooq, U., Ali, A., Patel, R., Malik, N.A.: Interaction between amphiphilic antidepressant drug nortryptyline hydrochloride and conventional cationic surfactants: a physicochemical study. J. Mol. Liq. 233, 310–318 (2017). https://doi.org/10.1016/j.molliq.2017.03.032

    Article  CAS  Google Scholar 

  3. Schreier, S., Malheiros, S.V., de Paula, E.: Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)

    Article  CAS  Google Scholar 

  4. Maurya, N., Parray ud din, M., Maurya, J.K., Kumar, A., Patel, R.: Interaction of promethazine and adiphenine to human hemoglobin: a comparative spectroscopic and computational analysis. Spectrochim. Acta Part A 199, 32–42 (2018). https://doi.org/10.1016/j.saa.2018.03.023

    Article  CAS  Google Scholar 

  5. Attwood, D., Florence, A.T.: Surfactant Systems: Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)

    Book  Google Scholar 

  6. He, L.L., Wang, Z.X., Wang, Y.X., Liu, X.P., Yang, Y.J., Gao, Y.P., Liu, B.: Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques. Colloids Surf. B 145, 820–829 (2016). https://doi.org/10.1016/j.colsurfb.2016.06.001

    Article  CAS  Google Scholar 

  7. Kralova, I., Sjöblom, J.: Surfactants used in food industry: a review. J. Disp. Sci. Technol. 30, 1363–1383 (2009)

    Article  CAS  Google Scholar 

  8. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)

    Book  Google Scholar 

  9. Tadros, T.F.: Applied Surfactants: Principles and Applications. Wiley, New York (2005)

    Book  Google Scholar 

  10. Menger, F.M., Littau, C.A.: Gemini-surfactants: synthesis and properties. J. Am. Chem. Soc. 113, 1451–1452 (1991)

    Article  CAS  Google Scholar 

  11. Kumar, D., Rub, M.A., Akram, M., Kabir-ud-Din.: Interaction of chromium(III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media. Tenside Surfactants Deterg. 51, 157–163 (2014). https://doi.org/10.3139/113.110296

    Article  CAS  Google Scholar 

  12. Kumar, D., Rub, M.A., Akram, M., Kabir-ud-Din, : Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s = 4,5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine. Spectrochimica Acta Part A 132, 288–294 (2014). https://doi.org/10.1016/j.saa.2014.05.002

    Article  CAS  Google Scholar 

  13. Lipinski, C.A.: Avoiding investment in doomed drugs. Curr. Drug Discov. 1, 17–19 (2001)

    Google Scholar 

  14. Lipinski, C.A.: Poor aqueous solubility—an industry-wide problem in drug discovery. Am. Pharm. Rev. 5, 82–85 (2002)

    Google Scholar 

  15. Akram, M., Anwar, S., Kabir-ud-Din.: Biophysical investigation of promethazine hydrochloride binding with micelles of biocompatible gemini surfactants: combination of spectroscopic and electrochemical analysis. Spectrochim. Acta Part A 215, 249–259 (2019). https://doi.org/10.1016/j.saa.209.02.082

    Article  CAS  Google Scholar 

  16. Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 64, 175–193 (2012). https://doi.org/10.1016/j.addr.2012.09.018

    Article  Google Scholar 

  17. Nakano, M.: Places of emulsions in drug delivery. Adv. Drug Deliv. Rev. 45, 1–4 (2000). https://doi.org/10.1016/S0169-409X(00)00096-X

    Article  CAS  PubMed  Google Scholar 

  18. Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47–60 (2000). https://doi.org/10.1016/S0939-6411(00)00076-X

    Article  CAS  PubMed  Google Scholar 

  19. Hennenfent, K.L., Govindan, R.: Novel formulations of taxanes: a review. Old wine in a new bottle? Ann. Oncol. 17, 735–749 (2005). https://doi.org/10.1093/annonc/mdj100

    Article  PubMed  Google Scholar 

  20. Gaucher, G., Marchessault, R.H., Leroux, J.C.: Polyester-based micelles and nanoparticles for the parental delivery of taxanes. J. Control Release 143, 2–12 (2010). https://doi.org/10.1016/j.jconrel.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  21. Rub, M.A., Naqvi, A.Z.: Mixed micellization between an antidepressant drug imipramine hydrochloride and surfactants (conventional/gemini) at different temperatures and compositions. J. Solution Chem. 44, 2448–2469 (2015). https://doi.org/10.1007/s10953-015-0412-3

    Article  CAS  Google Scholar 

  22. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and gemini) at 293.15 K to 308.15 K: Composition, interaction and stability of the aggregates. J. Colloid Interface Sci. 354, 700–708 (2011). https://doi.org/10.1016/j.jcis.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Mahajan, R.K., Mahajan, S., Bhadani, A., Singh, S.: Physicochemical studies of pyridinium gemini surfactants with promethazine hydrochloride in aqueous solution. Phys. Chem. Chem. Phys. 14, 887–898 (2012). https://doi.org/10.1039/C1CP22448D

    Article  CAS  PubMed  Google Scholar 

  24. Heinig, K., Vogt, C.: Determination of Triton X-100 in influenza vaccine by high-performance liquid chromatography and capillary electrophoresis. Fresenius J. Anal. Chem. 359, 202–206 (1997)

    Article  CAS  Google Scholar 

  25. Behera, K., Pandey, S.: Interaction between ionic liquid and zwitterionic surfactant: a comparative study of two ionic liquids with different anions. J. Colloid Interface Sci. 331, 196–205 (2009). https://doi.org/10.1016/j.jcis.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Banerjee, P., Chatterjee, S., Pramanik, S., Bhattacharya, S.C.: Interaction of pyrene-1-carboxaldehyde with micelles and mixed micelles of polyoxyethylenenonyl phenol (lgepal): a spectroscopic study. Colloids Surf. A 302, 44–50 (2007). https://doi.org/10.1016/j.colsurfa.2007.01.038

    Article  CAS  Google Scholar 

  27. Chauhan, S., Sharma, K.: Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. J. Chem. Thermodyn. 71, 205–211 (2014). https://doi.org/10.1016/j.jct.2013.12.019

    Article  CAS  Google Scholar 

  28. Sarkar, B., Lam, S., Alexandridis, P.: Micellization of alkyl-propoxy-ethoxylate surfactants in water–polar organic solvent mixtures. Langmuir 26, 10532–10540 (2010)

    Article  CAS  Google Scholar 

  29. Yan, S., Wei, A.W., Gao, A.Z., Xiaab, A.Y., Han, J.: Gemini surfactant with pyrrolidinium head groups and a hydroxyl-substituted spacer: surface properties and assisted one-pot synthesis of dendritic Au nanocrystals. New J. Chem. 42, 11573–11582 (2018). https://doi.org/10.1039/c8nj01357h

    Article  CAS  Google Scholar 

  30. Rub, M.A., Azum, N., Asiri, A.M., Kashmery, H.A., Alfaifi, S.Y.M., Alharthi, S.S.: Effect of sodium dodecylbenzenesulfonate on the association behavior of promethazine hydrochloride in aqueous/electrolyte solutions at different temperatures. J. Solution Chem. 46, 862–885 (2017). https://doi.org/10.1007/s10953-017-0614-y

    Article  CAS  Google Scholar 

  31. Kumar, D., Rub, M.A.: Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea. J. Mol. Liq. 238, 389–396 (2017). https://doi.org/10.1016/j.molliq.2017.05.027

    Article  CAS  Google Scholar 

  32. Rub, M.A., Khan, F., Kumar, D., Asiri, A.M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixture at different temperatures and compositions. Tenside Surfactants Deterg. 52, 236–244 (2015). https://doi.org/10.3139/113.110371

    Article  CAS  Google Scholar 

  33. Mahajan, R.K., Mahajan, S., Bhadani, A., Singh, S.: Physicochemical studies of pyridinium gemini surfactants with Promethazine hydrochloride in aqueous solution. Phys. Chem. Chem. Phys. 14, 887–898 (2012). https://doi.org/10.1039/c1cp22448d

    Article  CAS  PubMed  Google Scholar 

  34. Mukherjee, S., Mitra, D., Bhattacharya, S.C., Panda, A.K., Moulik, S.P.: Physicochemical studies on the micellization behavior of cetylpyridinium chloride and Triton X-100 binary mixtures in aqueous medium. Colloid J. 71, 677–686 (2009). https://doi.org/10.1134/S1061933X09050147

    Article  CAS  Google Scholar 

  35. Bazito, R.C., EI Seond, O.A.: Sugar-based surfactants: adsorption and micelle formation of sodium methyl 2-acylamido-2-deoxy-6-O-sulfo-D-glucopyranosides. Langmuir 18, 4362–4366 (2002). https://doi.org/10.1021/la0117552

    Article  CAS  Google Scholar 

  36. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1, 1327–1334 (1975). https://doi.org/10.1039/f19757101327

    Article  Google Scholar 

  37. Lange, H., Beck, K.H.: Zurmizellbildung in mischlösungenhomologer und nichthomologer. Tenside. Kolloid Z.Z. Polym. 251, 424–431 (1973)

    Article  CAS  Google Scholar 

  38. Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)

    Article  CAS  Google Scholar 

  39. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12, 1208–1211 (1996). https://doi.org/10.1021/la950691q

    Article  CAS  Google Scholar 

  40. Rub, M.A., Azum, N., Asiri, A.M.: Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles. J. Mol. Liq. 218, 595–603 (2016). https://doi.org/10.1016/j.molliq.2016.02.049

    Article  CAS  Google Scholar 

  41. Azum, N., Rub, M.A., Asiri, A.M., Khan, A.A.P., Khan, A., Khan, S.B., Rahman, M.M., Al-Youbi, A.O.: Interaction of the amphiphilic drug amitriptyline hydrochloride with gemini and conventional surfactants: a physicochemical approach. J. Solution Chem. 42, 1532–1544 (2013). https://doi.org/10.1007/s10953-013-0047-1

    Article  CAS  Google Scholar 

  42. Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloid entities. J. Chem. Soc. Faraday Trans. 87, 3529–3535 (1991). https://doi.org/10.1039/ft9918703529

    Article  CAS  Google Scholar 

  43. Rub, M.A., Khan, F., Sheikh, M.S., Azum, N., Asiri, A.M.: Tensiometric, fluorescence and 1H NMR study of mixed micellization of non-steroidal anti-inflammatory drug sodium salt of ibuprofen in the presence of non-ionic surfactant in aqueous/urea solutions. J. Chem. Thermodyn. 96, 196–207 (2016). https://doi.org/10.1016/j.jct.2016.01.001

    Article  CAS  Google Scholar 

  44. Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess, pp. 179–232. Plenum Press, New York (1984)

    Book  Google Scholar 

  45. Matijevic, E., Pethica, B.A.: The properties of ionized monolayers. Part 1 Sodium dodecyl sulphate at the air/water interface. Trans. Faraday Soc. 54, 1382–1389 (1958). https://doi.org/10.1039/tf9585401382

    Article  CAS  Google Scholar 

  46. Alam, M.S., Mandal, A.B.: Thermodynamic studies on mixed micellization of amphiphilic drug amitriptyline hydrochloride and nonionic surfactant Triton X-100. J. Mol. Liq. 168, 75–79 (2012). https://doi.org/10.1016/j.molliq.2012.01.014

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arifa Shaheen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The plots of specific conductance vs [PMT] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1. Fig. S2 The plots of surface tension vs log [PMT] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1. Fig. S3 The fluorescence plots of F/F0 vs [PMT]] in absence and presence of different additives at mole fraction of TX-100 (α1) (a) 3.48 × 10−4, (b) 6.06 × 10−4 and (c) 1 (DOCX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, A., Arif, R. Studies of Mixed Micellization Behavior of Promethazine Hydrochloride and Triton X-100 in the Presence of Additives Using Multiple Techniques. J Solution Chem 48, 1393–1412 (2019). https://doi.org/10.1007/s10953-019-00921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00921-y

Keywords

Navigation