Skip to main content
Log in

Single-ion magnet behavior of two pentacoordinate CoII complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new air-stable mononuclear pentacoordinate CoII complexes [Co(bpip)(NCS)2] (1) and [Co(bpip)Br2] (2), which are based on a NNN-pincer ligand 2,6-bis(imidazo[1,5-a]pyridin-3-yl)pyridine (abbreviated as bpip), were successfully synthesized and structurally characterized. Although two different halogen and pseudohalogen terminal ligands were employed, single-crystal X-ray crystallographic analyses revealed that the CoII center of 1 and 2 adopts C4v symmetry and displays the similar distorted square-pyramidal geometry. Magnetic studies showed that two compounds exhibit slow magnetic relaxation in the presence of an applied dc field, namely, they display the behavior of single-ion magnets (SIMs). The reported two complexes enrich the chemistry of cobalt(II) single-ion magnets (SIMs) with low coordination numbers and highlight the differences in the magnetic behaviors caused by the different terminal ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Younus HA, Ahmad N, Sua W, Verpoort F (2014) Ruthenium pincer complexes: ligand design and complex synthesis. Coord Chem Rev 276:112–152

    CAS  Google Scholar 

  2. Nazeeruddin MK, Baker RH, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) Highly phosphorescence iridium complexes and their application in organic light-emitting devices. J Am Chem Soc 125:8790–8797

    CAS  PubMed  Google Scholar 

  3. Wenz J, Wadepohl H, Gade LH (2017) Regioselective hydrosilylation of epoxides catalysed by nickel(II) hydrido complexes. Chem Commun 53:4308–4311

    CAS  Google Scholar 

  4. Takeuchi D, Takano S, Takeuchi Y, Osakada K (2014) Ethylene polymerization at high temperatures catalyzed by double decker-type dinuclear iron and cobalt complexes: dimer effect on stability of the catalyst and polydispersity of the product. Organometallics 33:5316–5323

    CAS  Google Scholar 

  5. Jitendrasingh R, Pragya S, Pardeep K, Chinmoy D, Shefali V, Mahesh S, Muralidharan S, Maheswaran S (2019) Stabilizing terminal Ni(III)–hydroxide complex using NNN-pincer ligands: synthesis and characterization. Inorg Chem 58:6257–6267

    Google Scholar 

  6. Tessa MB, Teresa LM, Aristidis V, Bo L, Jeffery AB, Michael LN (2016) Magnetic circular dichroic sm and density functional theory studies of iron(II)-pincer complexes: insight into electronic structure and bonding effects of pincer N-heterocyclic carbene moieties. Organometallics 35:3692–3700

    Google Scholar 

  7. Marko P, Amador GF, Matija Z, Claude D, Stepan S, Pablo GF, Maja GP (2015) Magnetic anisotropy in “scorpionate” first-row transition-metal complexes: a theoretical investigation. Chem Eur J 21:3716–3726

    Google Scholar 

  8. Shaffer DW, Bhowmick I, Rheingold AL, Tsay C, Livesay BN, Shores MP, Yang JY (2016) Spin-state diversity in a series of Co(II) PNP pincer bromide complexes. Dalton Trans 45:17910–17917

    CAS  PubMed  Google Scholar 

  9. Hood TM, Leforestier B, Gyton MR, Chaplin AB (2019) Synthesis and structural dynamics of five-coordinate Rh(III) and Ir(III) PNP and PONOP pincer complexes. Inorg Chem 58:7593–7601

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo JJ, Wang Z, Zhang WJ, Oleynik LL, Vignesh A, Oleynik LV, Hu XQ, Sun Y, Sun WH (2019) Highly linear polyethylenes achieved using thermo-stable and efficient cobalt precatalysts bearing carbocyclic-fused NNN-pincer ligand. Molecules 24:1176–1196

    PubMed Central  Google Scholar 

  11. Merz LS, Blasius CK, Wadepohl H, Gade LH (2019) Square planar cobalt(II) hydride versus T-shaped cobalt(I): structural characterization and dihydrogen activation with PNP–cobalt pincer complexes. Inorg Chem 58:6102–6113

    CAS  PubMed  Google Scholar 

  12. Rajpurohit J, Shanmugam M (2019) The molecular and electronic structure of an unusual cobalt NNO pincer ligand complex. Dalton Trans 48:7378–7387

    CAS  PubMed  Google Scholar 

  13. Alberico E, Lennox AJJ, Vogt LK, Jiao HJ, Baumann W, Drexler HJ, Nielsen M, Spannenberg A, Checinski MP, Junge H, Beller M (2016) Unravelling the mechanism of basic aqueous methanol dehydrogenation catalyzed by Ru–PNP pincer complexes. J Am Chem Soc 138:14890–14904

    CAS  PubMed  Google Scholar 

  14. Sanchez P, Juarez MH, Alvarez E, Paneque M, Rendon N, Suarez A (2016) Synthesis, structure and reactivity of Pd and Ir complexes based on new lutidine-derived NHC/phosphine mixed pincer ligands. Dalton Trans 45:16997–17009

    CAS  PubMed  Google Scholar 

  15. Mondal AK, Jover J, Ruiz E, Konar S (2017) Investigation of easy-plane magnetic anisotropy in P-ligand square-pyramidal CoII single ion magnets. Chem Commun 53:5338–5341

    CAS  Google Scholar 

  16. Meng YS, Mo ZB, Wang BW, Zhang YQ, Deng L, Gao S (2015) Observation of the single-ion magnet behavior of d8 ions on two-coordinate Co(I)–NHC complexes. Chem Sci 6:7156–7162

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nemec I, Marx R, Herchel R, Neugebauer P, Slageren J, Travnicek Z (2015) Field-induced slow relaxation of magnetization in a pentacoordinate Co(II) compound [Co(phen)(DMSO)Cl2]. Dalton Trans 44:15014–15021

    CAS  PubMed  Google Scholar 

  18. Zhu YY, Yin TT, Liu CW, Gao C, Wu ZQ, Zhang YQ, Wang BW, Gao S (2015) Field-induced slow magnetic relaxation in a hydrogen-bonding linked Co(II) 1D supramolecular coordination polymer. Supramol Chem 27:401–406

    CAS  Google Scholar 

  19. Alexandropoulos DI, Dolinar BS, Vignesh KR, Dunbar KR (2017) Putting a new spin on supramolecular metallacycles: Co3 triangle and Co4 square bearing tetrazine-based radicals as bridges. J Am Chem Soc 139:11040–11043

    CAS  PubMed  Google Scholar 

  20. Zadrozny JM, Long JR (2011) Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J Am Chem Soc 133:20732–20734

    CAS  PubMed  Google Scholar 

  21. Zhu YY, Cui C, Zhang YQ Jia JH, Guo X, Gao C, Qian K, Jiang SD, Wang BW, Wang ZM, Gao S (2013) Zero-field slow magnetic relaxation from single Co(II) ion: a transition metal single-molecule magnet with high anisotropy barrier. Chem Sci 4:1802–1806

    CAS  Google Scholar 

  22. Mitsuhashi R, Hosoya S, Suzuki T, Sunatsuki Y, Sakiyama H, Mikuriya M (2019) Hydrogen-bonding interactions and magnetic relaxation dynamics in tetracoordinated cobalt(II) single-ion magnets. Dalton Trans 48:395–399

    CAS  PubMed  Google Scholar 

  23. Yao XN, Du JZ, Zhang YQ, Leng XB, Yang MW, Jiang SD, Wang ZX, Ouyang ZW, Deng L, Wang BW, Gao S (2017) Two-coordinate Co(II) imido complexes as outstanding single-molecule magnets. J Am Chem Soc 139:373–380

    CAS  PubMed  Google Scholar 

  24. Zhu YY, Zhang YQ, Yin TT, Gao C, Wang BW, Gao S (2015) A family of CoIICoIII3 single-ion magnets with zero-field slow magnetic relaxation: fine tuning of energy barrier by remote substituent and counter cation. Inorg Chem 54:5475–5486

    CAS  PubMed  Google Scholar 

  25. Shao D, Zhang SL, Shi L, Zhang YQ, Wang XY (2016) Probing the effect of axial ligands on easy-plane anisotropy of pentagonal-bipyramidal cobalt(II) single-ion magnets. Inorg Chem 55:10859–10869

    CAS  PubMed  Google Scholar 

  26. Chen L, Wang J, Wei JM, Wernsdorfer W, Chen XT, Zhang YQ, Song Y, Xue ZL (2014) Slow magnetic relaxation in a mononuclear eight-coordinate cobalt(II) complex. J Am Chem Soc 136:12213–12216

    CAS  PubMed  Google Scholar 

  27. Smolko L, Cernak J, Dusek M, Miklovic J, Titis J, Boca R (2015) Three tetracoordinate Co(II) complexes [Co(biq)X2] (X = Cl, Br, I) with easy-plane magnetic anisotropy as field-induced single-molecule magnets. Dalton Trans 44:17565–17571

    CAS  PubMed  Google Scholar 

  28. Bohme M, Ziegenbalg S, Aliabadi A, Schnegg A, Gorls H, Plass W (2018) Magnetic relaxation in cobalt(II)-based single-ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment. Dalton Trans 47:10861–10873

    PubMed  Google Scholar 

  29. Jurca T, Farghal A, Lin PH, Korobkov I, Murugesu M, Richeson DS (2011) Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications. J Am Chem Soc 133:15814–15817

    CAS  PubMed  Google Scholar 

  30. Massoud SS, Fischer RC, Mautner FA, Parfait MM, Herchel R, Trávníček Z (2018) Pentacoordinate cobalt(II) complexes with neutral tripodal N-donor ligands: zero-field splitting for a distorted trigonal bipyramidal geometry. Inorg Chim Acta 471:630–639

    CAS  Google Scholar 

  31. Nemec I, Herchel R, Travnicek Z (2016) Ferromagnetic coupling mediated by Co π non-covalent contacts in a pentacoordinate co(II) compound showing field-induced slow relaxation of magnetization. Dalton Trans 45:12479–12482

    CAS  PubMed  Google Scholar 

  32. Mondal AK, Goswami T, Misra A, Konar S (2017) Probing the effects of ligand field and coordination geometry on magnetic anisotropy of pentacoordinate cobalt(II) single-ion magnets. Inorg Chem 56:6870–6878

    CAS  PubMed  Google Scholar 

  33. Rajnak C, Titis J, Miklovic J, Kostakis GE, Fuhr O, Ruben M, Boca R (2017) Five mononuclear pentacoordinate co(II) complexes with field-induced slow magnetic relaxation. Polyhedron 126:174–183

    CAS  Google Scholar 

  34. Nemec I, Liu H, Herchel R, Zhang XQ, Travnicek Z (2016) Magnetic anisotropy in pentacoordinate 2,6-bis(arylazanylidene-1-chloromethyl)pyridine cobalt(II) complexes with chlorido co-ligands. Synth Met 215:158–163

    CAS  Google Scholar 

  35. Rajnak C, Titis J, Fuhr O, Ruben M, Boca R (2014) Single-molecule magnetism in a pentacoordinate cobalt(II) complex supported by an antenna ligand. Inorg Chem 53:8200–8202

    CAS  PubMed  Google Scholar 

  36. Rajnak C, Titis J, Salitros I, Boca R, Fuhr O, Ruben M (2013) Zero-field splitting in pentacoordinate co(II) complexes. Polyhedron 65:122–128

    CAS  Google Scholar 

  37. Cariou R, Chirinos JJ, Gibson VC, Jacobsen G, Tomov AK, Britovsek GJP, White AJP (2010) The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene. Dalton Trans 39:9039–9045

    CAS  PubMed  Google Scholar 

  38. Rajnak C, Varga F, Titis J, Monco J, Boca R (2017) Field-supported single-molecule magnets of type [co(bzimpy)X2]. Eur J Inorg Chem 13:1915–1922

    Google Scholar 

  39. Chen YM, Li L, Chen Z, Liu YL, Hu HL, Chen WQ, Liu L, Li YH, Lei T, Cao YY, Kang ZH, Lin MS, Li W (2012) Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands. Inorg Chem 51:9705–9713

    CAS  PubMed  Google Scholar 

  40. Cui YF, Xu YM, Liu X, Li YH, Wang BL, Dong YP, Li W, Lei SM (2019) Field induced single-ion magnetic behaviors in two mononuclear cobalt(II) complexes. Chem Asian J 14:2620-2628

    CAS  Google Scholar 

  41. Huang CH, Giokaris A, Gevorgyan V (2011) Palladium-catalyzed highly regioselective C-3 arylation of imidazo[1,5-a]pyridine. Chem Lett 40:1053–1054

    CAS  Google Scholar 

  42. Yamaguchi E, Shibahara F, Murai T (2011) Direct sequential C3 and C1 arylation reaction of imidazo[1,5-a]pyridine catalyzed by a 1,10-phenanthroline–palladium complex. Chem Lett 40:939–940

    CAS  Google Scholar 

  43. Yagishita F, Nomura K, Shiono S, Nii C, Mino T, Sakamoto M, Kawamura Y (2016) Palladium–catalyzed Mizoroki–heck reaction using imidazo[1,5-a]pyridines. ChemistrySelect 1:4560–4563

    CAS  Google Scholar 

  44. Yagishita F, Shimokawa S, Uemura N, Yoshida Y, Mino T, Sakamoto M, Kawamura Y (2017) Palladium-catalyzed Mizoroki–heck reaction of aryl iodides with allyl aryl ethers using imidazo[1,5-a] pyridines. ChemistrySelect 1:10143–10145

    Google Scholar 

  45. Granovsky AA (2011) Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J Chem Phys 134:214113(1)–214113(14)

    Google Scholar 

  46. Shiozaki T, Gyorffy W, Celani P, Werner HJ (2011) Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J Chem Phys 135:081106(1)–081106(4)

    Google Scholar 

  47. Ungur L, Chibotaru LF (2017) Ab initio crystal field for lanthanides. Chem Eur J 23:3708–3718

    CAS  PubMed  Google Scholar 

  48. Aquilante F, Vico LD, Ferré N, Ghigo G, Malmqvist PA, Neogrády P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Andrés LS, Urban M, Veryazov V, Lindh R (2010) Software news and update MOLCAS 7: the next generation. J Comput Chem 31:224–227

    CAS  PubMed  Google Scholar 

  49. Veryazov V, Widmark PO, Andres LS, Lindh R, Roos BO (2004) 2MOLCAS as a development platfo. Int J Quantum Chem 100:626–635

    CAS  Google Scholar 

  50. Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239

    Google Scholar 

  51. Chibotaru LF, Ungur L, Soncini A (2008) The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47:4126–4129

    CAS  Google Scholar 

  52. Ungur L, Heuvel WV, Chibotaru LF (2009) Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J Chem 33:1224–1230

    CAS  Google Scholar 

  53. Chibotaru LF, Ungur L, Aronica C, Elmoll H, Pilet G, Luneau D (2008) Structure, magnetism, and theoretical study of a mixed-valence CoII3CoIII4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J Am Chem Soc 130:12445–12455

    CAS  PubMed  Google Scholar 

  54. Jose C, Jorunn S, Francesc L, Miguel J (2009) Preparation, crystal structures and magnetic properties of three thiocyanato-bridged copper(II) complexes with 2,2′ -biimidazole or 2-(2′-pyridyl)imidazole as terminal ligands. Polyhedron 28:2249–2257

    Google Scholar 

  55. Jia HL, Jia MJ, Li GH, Wang YN, Yu JH, Xu JQ (2013) New thiocyanatocadmates templated by multi-dentate N-heterocyclic/diamine molecules. Dalton Trans 42:6429–6439

    CAS  PubMed  Google Scholar 

  56. Joanna PG, Barbara M, Francesc L, Miguel J (2015) Ferromagnetic coupling through the end-to-end thiocyanate bridge in cobalt(II) and nickel(II) chains. Cryst Growth Des 15:2380–2388

    Google Scholar 

  57. Shen L, Xu YZ (2001) Structure and magnetic properties of a novel two-dimensional thiocyanato-bridged heterometallic polymer {Cu(en)2[Ni(en)(SCN)3]2}n. J Chem Soc Dalton Trans 23:3413–3414

    Google Scholar 

  58. Yi L, Ding B, Zhao B, Cheng P, Liao DZ, Yan SP, Jiang ZH (2004) Novel triazole-bridged cadmium coordination polymers varying from zero- to three-dimensionality. Inorg Chem 43:33–43

    CAS  PubMed  Google Scholar 

  59. Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S (2010) Shape, version 2.0. Universitat de Barcelona, Barcelona, Spain

    Google Scholar 

  60. Addison AW, Rao TN, Reedijk J, Van Rijn J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen−Sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans 7:1349–1356

    Google Scholar 

  61. Switlicka A, Machura B, Penkala M, Bieńko A, Bieńko DC, Titis J, Rajnak C, Boca R, Ozarowski A, Ozerov M (2018) Slow magnetic relaxation in cobalt(II) field-induced single-ion magnets with positive large anisotropy. Inorg Chem 57:12740–12755

    CAS  PubMed  Google Scholar 

  62. Woods TJ, Ballesteros RMF, Gómez CS, Ruiz E, Dunbar KR (2016) Relaxation dynamics of identical trigonal bipyramidal cobalt molecules with different local symmetries and packing arrangements: Magnetostructural correlations and ab inito calculations. J Am Chem Soc 138:16407–16416

    CAS  PubMed  Google Scholar 

  63. Spackman MA, Mckinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    CAS  Google Scholar 

  64. Mckinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 43:3814–3381

    Google Scholar 

  65. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal explorer version 3.0. University of Western Australia, Crawley Australia

    Google Scholar 

  66. Mabbs FE, Machin DJ (2008) Magnetism and transition metal complexes. Dover Publications, Mineola, NY

    Google Scholar 

  67. Guo YN, Xu GF, Guo Y, Tang JK (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40:9953–9963

    CAS  PubMed  Google Scholar 

  68. Carlin RL, Duyneveldt AJ (1976) Magnetic properties of transition metal compounds. Springer–Verlag, New York

    Google Scholar 

  69. Vaidya S, Upadhyay A, Singh SK, Gupta T, Tewary S, Langley SK, Walsh JPS, Murray KS, Rajaraman G, Shanmugam M (2015) A synthetic strategy for switching the single ion anisotropy in tetrahedral co(II) complexes. Chem Commun 51:3739–3742

    CAS  Google Scholar 

Download references

Funding

Financial support was from Natural Science Foundation of China (21272167, 21772140, and 21771136), Natural Science Foundation of Jiangsu Province of China (BK20171213), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution, and the project of scientific and technologic infrastructure of Suzhou (SZS201708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahong Li, Jin Tao or Jinlei Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

We did not violate any ethical standard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Ge, Y., Li, Y. et al. Single-ion magnet behavior of two pentacoordinate CoII complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine. Struct Chem 31, 547–555 (2020). https://doi.org/10.1007/s11224-019-01429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01429-3

Keywords

Navigation