Skip to main content
Log in

Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Inferior fracture toughness (KIC), low thermal expansion coefficient (CTE), thermochemical incompatibility with bond coat and growth of thermally grown oxide (TGO) are the main destruction factors in conventional Gd2Zr2O7 (GZO) thermal barrier coating (TBC) undergoing thermal cycling. In this paper, to overcome these drawbacks, nanostructured GZO and an intermediate conventional YSZ layer between top and bond coats were used in the TBC system. Single-layer nanostructured GZO and dual-layer YSZ/nanostructured GZO coatings were deposited with atmospheric plasma spray technique on Ni-based superalloy (IN738LC) substrates as a topcoat with a CoNiCrAlY bond coat. Oxidation behaviour of samples was studied and compared in the cyclic mode at 1100 °C for 4 h in each cycle. Also, CTE and KIC of the nanostructured GZO and intermediate YSZ layers were investigated. The results indicated that the oxidation life of dual-layer YSZ/nanostructured GZO coating was 3.2 times more than that of single-layer nanostructured GZO. The microstructural analysis indicated that the growth rate of TGO was considerably slower for dual-layer coating due to reduced oxygen infiltration and cracks propagation. Also, nanostructured topcoat improved the thermochemical compatibility and mechanical properties in TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. A. Dearnley, “Surface engineering for gas turbine engines (GTEs)”. Introduction to surface engineering, (Cambridge University Press, Cambridge, 2017), pp. 423–448.

    Google Scholar 

  2. H. Xu and H. Guo, Thermal barrier coatings, (Woodhead Publishing Limited, Cambridge, 2011), pp. 193–197.

    Book  Google Scholar 

  3. R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack and D. Stöver, Surface and Coatings Technology 205, 938 (2010).

    Article  CAS  Google Scholar 

  4. D. R. Clarke and S. R. Phillpot, Materials Today 8, 22–29 (2005).

    Article  CAS  Google Scholar 

  5. X. Cao, R. Vassen and D. Stoever, Journal of the European Ceramic Society 24, 1–10 (2004).

    Article  CAS  Google Scholar 

  6. B. Liang, C. Ding, H. Liao and C. Coddet, Surface and Coatings Technology 200, 4549–4556 (2006).

    Article  CAS  Google Scholar 

  7. M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour and A. Keyvani, Ceramics International 45, 7344–7350 (2019).

    Article  CAS  Google Scholar 

  8. Q.-L. Li, X.-Z. Cui, S.-Q. Li, W.-H. Yang, C. Wang and Q. Cao, Journal of Thermal Spray Technology 24, 136–143 (2015).

    Google Scholar 

  9. M. N. Rahaman, J. R. Gross, R. E. Dutton and H. Wang, Acta Materialia 54, 1615–1621 (2006).

    Article  CAS  Google Scholar 

  10. J. Ballard, J. Davenport, C. Lewis, R. Doremus, L. Schadler and W. Nelson, Journal of Thermal Spray Technology 12, 34–37 (2003).

    Article  CAS  Google Scholar 

  11. A. Keyvani and M. Bahamirian, Surface Engineering 33, 433–443 (2017).

    Article  CAS  Google Scholar 

  12. M. Bahamirian and S. K. Asl, Iranian Journal of Materials Science and Engineering 10, 12–21 (2013).

    CAS  Google Scholar 

  13. A. Keyvani, M. Bahamirian and A. Kobayashi, Journal of Alloys and Compounds 727, 1057–1066 (2017).

    Article  CAS  Google Scholar 

  14. A. Keyvani and M. Bahamirian, Materials Research Express 3, 1–12 (2016).

    Article  CAS  Google Scholar 

  15. S. Yugeswaran, A. Kobayashi and P. Ananthapadmanabhan, Journal of the European Ceramic Society 32, 823–834 (2012).

    Article  CAS  Google Scholar 

  16. J. Xiang, C. Shuhai, J. Huang, W. Liang, C. Yanjun, W. Ruijun, et al., Journal of Rare Earths 30, 228–232 (2012).

    Article  CAS  Google Scholar 

  17. J. Xiang, S. Chen, J. Huang, H. Zhang and X. Zhao, Ceramics International 38, 3607–3612 (2012).

    Article  CAS  Google Scholar 

  18. Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang and Y. Zhou, Ceramics International 40, 11277–11282 (2014).

    Article  CAS  Google Scholar 

  19. E. Bakan, D. E. Mack, G. Mauer and R. Vassen, Journal of the American Ceramic Society 97, 4045–4051 (2014).

    Article  CAS  Google Scholar 

  20. X. Cao, R. Vassen, F. Tietz and D. Stoever, Journal of the European Ceramic Society 26, 247–251 (2006).

    Article  CAS  Google Scholar 

  21. M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour and A. Keyvani, Surface and Coatings Technology 360, 1–12 (2019).

    Article  CAS  Google Scholar 

  22. C. Wang, L. Guo, Y. Zhang, X. Zhao and F. Ye, Ceramics International 41, 10730–10735 (2015).

    Article  CAS  Google Scholar 

  23. H. Zhao, M. R. Begley, A. Heuer, R. Sharghi-Moshtaghin and H. N. Wadley, Surface and Coatings Technology 205, 4355–4365 (2011).

    Article  CAS  Google Scholar 

  24. S. Mahade, R. Li, N. Curry, S. Björklund, N. Markocsan and P. Nylén, International Journal of Applied Ceramic Technology 13, 443–450 (2016).

    Article  CAS  Google Scholar 

  25. R. Leckie, S. Krämer, M. Rühle and C. Levi, Acta Materialia 53, 3281–3292 (2005).

    Article  CAS  Google Scholar 

  26. Y. Ozgurluk, K. M. Doleker and A. C. Karaoglanli, Applied Surface Science 438, 96–113 (2018).

    Article  CAS  Google Scholar 

  27. K. S. Lee, D. H. Lee and T. W. Kim, Journal of the Ceramic Society of Japan 122, 668–673 (2014).

    Article  CAS  Google Scholar 

  28. R. Vassen, F. Traeger and D. Stöver, International Journal of Applied Ceramic Technology 1, 351–361 (2004).

    Article  CAS  Google Scholar 

  29. R. Vassen, A. Stuke and D. Stöver, Journal of Thermal Spray Technology 18, 181–186 (2009).

    Article  CAS  Google Scholar 

  30. A. Keyvani, M. Saremi and M. H. Sohi, Surface and Coatings Technology 206, 208–216 (2011).

    Article  CAS  Google Scholar 

  31. R. S. Lima and B. R. Marple, Journal of Thermal Spray Technology 16, 40–63 (2007).

    Article  CAS  Google Scholar 

  32. C. Zhou, N. Wang and H. Xu, Materials Science and Engineering: A 452, 569–574 (2007).

    Article  CAS  Google Scholar 

  33. H. Chen, X. Zhou and C. Ding, Journal of the European Ceramic Society 23, 1449–1455 (2003).

    Article  CAS  Google Scholar 

  34. R. Lima, A. Kucuk and C. Berndt, Surface and Coatings Technology 135, 166–172 (2001).

    Article  CAS  Google Scholar 

  35. A. Keyvani, Journal of Alloys and Compounds 623, 229–237 (2015).

    Article  CAS  Google Scholar 

  36. D. Chicot and A. Tricoteaux, in Mechanical Properties of Ceramic by Indentation: Principle and Applications, Ceramic Materials (InTech, 2010).

  37. P. Jana, P. Jayan, S. Mandal and K. Biswas, Surface and Coatings Technology 328, 398–409 (2017).

    Article  CAS  Google Scholar 

  38. C. G. Levi, Current Opinion in Solid State and Materials Science 8, 77–91 (2004).

    Article  CAS  Google Scholar 

  39. B. Gleeson, Journal of Propulsion and Power 22, 375–383 (2006).

    Article  CAS  Google Scholar 

  40. F.-W. Bach, K. Möhwald, A. Laarmann and T. Wenz, Modern Surface Technology, (Wiley, New York, 2006).

    Book  Google Scholar 

  41. J. Ilavsky and J. K. Stalick, Surface and Coatings Technology 127, 120–129 (2000).

    Article  CAS  Google Scholar 

  42. H. Grünling and W. Mannsmann, Le Journal de Physique IV 3, C7-903–C7-912 (1993).

    Google Scholar 

  43. L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, Y. Zhou, et al., Materials and Design 32, 36–47 (2011).

    Article  CAS  Google Scholar 

  44. I. Golosnoy, A. Cipitria and T. Clyne, Journal of Thermal Spray Technology 18, 809–821 (2009).

    Article  Google Scholar 

  45. X. Guo, Z. Lu, Y.-G. Jung, L. Li, J. Knapp and J. Zhang, Metallurgical and Materials Transactions E 3, 64–70 (2016).

    Article  CAS  Google Scholar 

  46. S. Guo, Computational Design and Experimental Validation of New Thermal Barrier Systems, (Louisiana State Univ, Baton Rouge, 2015).

    Book  Google Scholar 

  47. A. G. Evans, D. Mumm, J. Hutchinson, G. Meier and F. Pettit, Progress in Materials Science 46, 505–553 (2001).

    Article  Google Scholar 

  48. S. R. Choi, J. W. Hutchinson and A. Evans, Mechanics of Materials 31, 431–447 (1999).

    Article  Google Scholar 

  49. Z. Zou, L. Jia, L. Yang, X. Shan, L. Luo, F. Guo, et al., Surface and Coatings Technology 319, 370–377 (2017).

    Article  CAS  Google Scholar 

  50. A. Keyvani, M. Saremi, M. H. Sohi and Z. Valefi, Journal of Alloys and Compounds 541, 488–494 (2012).

    Article  CAS  Google Scholar 

  51. K. Takagi, A. Kawasaki, Y. Harada and M. Okazaki, Materials Science Forum 631–632, 85–90 (2010).

    Google Scholar 

  52. O. Kubaschewski, A. Evans, and C. B. Alcock, Metallurgical Thermochemistry (Pergamon Press, Oxford, 1967).

  53. Y. Lee, H. Sheu, J. Deng and H.-C. Kao, Journal of Alloys and Compounds 487, 595–598 (2009).

    Article  CAS  Google Scholar 

  54. F. Zhang, M. Lang and R. Ewing, Applied Physics Letters 106, 191902 (2015).

    Article  CAS  Google Scholar 

  55. H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi and U. Paik, Surface and Coatings Technology 200, 4355–4362 (2006).

    Article  CAS  Google Scholar 

  56. Y.-S. Song, I.-G. Lee, D. Y. Lee, D.-J. Kim, S. Kim and K. Lee, Materials Science and Engineering: A 332, 129–133 (2002).

    Article  Google Scholar 

  57. J. S. Wallace and J. Ilavsky, Journal of Thermal Spray Technology 7, 521–526 (1998).

    Article  CAS  Google Scholar 

  58. F. Tang and J. M. Schoenung, Scripta Materialia 54, 1587–1592 (2006).

    Article  CAS  Google Scholar 

  59. K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y.-G. Jung and U. Paik, Journal of Alloys and Compounds 507, 448–455 (2010).

    Article  CAS  Google Scholar 

  60. Z. Wu, L. Ni, Q. Yu and C. Zhou, Journal of Thermal Spray Technology 21, 169–175 (2012).

    Article  CAS  Google Scholar 

  61. H. Chen, S. W. Lee, H. Du, C. X. Ding and C. H. Choi, Materials Letters 58, 1241–1245 (2004).

    Article  CAS  Google Scholar 

  62. J. Li, H. Liao, X. Wang, C. Coddet, H. Chen and C. Ding, Thin Solid Films 460, 101–115 (2004).

    Article  CAS  Google Scholar 

  63. M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. Bakhsheshi-Rad, E. Hamzah and M. Nazoktabar, Journal of Rare Earths 32, 989–1002 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. M. Hadavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahamirian, M., Hadavi, S.M.M., Farvizi, M. et al. Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling. Oxid Met 92, 401–421 (2019). https://doi.org/10.1007/s11085-019-09937-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09937-7

Keywords

Navigation