Skip to main content
Log in

Effects of Oxidation and Alumina Addition on the Physical and Mechanical Properties of Ti/Al2O3 Composites Prepared by Semi-powder Metallurgy Method

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of oxidation and alumina addition on the physical and mechanical properties of Ti/Al2O3 composites were studied. The variation in alumina addition used in this study was 0, 10, 20 and 30 wt%. The mixture of Ti and Al2O3 was prepared by semi-powder metallurgy method and then pressed and followed by sintering in air atmosphere at 1000 °C for 2 h. The present results show that the density of the sintered Ti/Al2O3 decreased with increasing alumina amount and oxidation. XRD and EDX analysis indicates that the sample free of alumina produced the oxides in the form of TiO2 on the surface of the composite. With alumina addition, the AlTiO2 oxide appears besides TiO2. This occurrence confirms that the oxidation of Ti increases with increasing the amounts of alumina. The intermetallic phase Ti3Al has appeared in the Ti/Al2O3 composites, which might be due to reduction in alumina by Ti. The oxidation of Ti/Al2O3 composites decreases the hardness and compressive yield strength and hardness values. The decrease in mechanical properties becomes more obvious with increasing the alumina amount which enhanced the formation of oxidation scales after sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Kosaka, K. Faller and S. P. Fox, JOM 56, 31 (2004).

    Article  CAS  Google Scholar 

  2. M. Peters, J. Kumpfert, C. Ward and C. Leyens, Advanced Engineering Materials 5, 419 (2003).

    Article  CAS  Google Scholar 

  3. R. Banerjee, P. C. Collins and D. L. Fraser, Advanced Engineering Materials 4, 847 (2002).

    Article  CAS  Google Scholar 

  4. A. Miklaszewski, International Journal of Refractory Metals and Hard Materials 53, 56 (2015).

    Article  CAS  Google Scholar 

  5. S. Guo, Journal of the European Ceramic Society 36, 1349 (2016).

    Article  CAS  Google Scholar 

  6. Y. C. Zhou, D. T. Wan, Y. W. Bao and J. Y. Wang, International Journal of Applied Ceramic Technology 3, 47 (2006).

    Article  CAS  Google Scholar 

  7. J. F. Zhu, L. Ye and L. H. He, Ceramics International 38, 5475 (2012).

    Article  CAS  Google Scholar 

  8. C. Guo, J. Zhou, J. Zhao, B. Guo, et al., Applied Surface Science 257, 4398 (2011).

    Article  CAS  Google Scholar 

  9. K. Morsi, V. V. Patel, S. Naraghi and J. E. Garay, Journal of Materials Processing Technology 196, 236 (2008).

    Article  CAS  Google Scholar 

  10. H. Dong and T. Bell, Wear 238, 131 (2000).

    Article  CAS  Google Scholar 

  11. B. G. Wang, D. F. Bliss and M. J. Callahan, Journal of Crystal Growth 311, 443 (2009).

    Article  CAS  Google Scholar 

  12. S. Feng, Z. Wang, G. P. Shi, W. Ma and L. H. Liu, Rare Metal Materials and Engineering 42, 392 (2013).

    Article  Google Scholar 

  13. B. Wang, H. Liu, H. Zhu, C. Huang, et al., Materials Research Express 6, 045028 (2019). https://doi.org/10.1088/2053-1591/aafc06.

    Article  CAS  Google Scholar 

  14. Z. Wang, K. Xu, Q. Shen, Y. Z. Wang and L. M. Zhang, Journal of Wuhan University of Technology 20, 30 (2005).

    Article  Google Scholar 

  15. M. Schmitze, Oxidation of Metals 44, 29 (1995).

    Article  Google Scholar 

  16. M. Schmitz-Niederau and M. Schuetze, in Proceedings of 1st International Symposium on Gamma Titanium Aluminides, (TMS, Warrendale, 1995).

  17. S. Cabanas-Polo, R. Bermejo, B. Ferrari, et al., Corrosion Science 55, 172 (2012).

    Article  CAS  Google Scholar 

  18. M. Schmitz-Niederau and M. Schutze, Oxidation of Metals 52, 225 (1999).

    Article  CAS  Google Scholar 

  19. M. Mahmoudi, H. Maleki-Ghaleh and M. Kavanlouei, Bulletin of Materials Science 38, 351 (2015).

    Article  CAS  Google Scholar 

  20. A. Arockiasamy, R. M. German, D. F. Heaney, et al. Powder Metallurgy 54, 420 (2011).

  21. T. Sadowski, S. Ataya and K. Nakonieczny, Computational Materials Science 45, 624 (2009).

    Article  CAS  Google Scholar 

  22. C. A. Leon, G. Rodriguez-Ortiz and E. A. Aguilar-Reyes, Materials Science and Engineering: A 526, 106 (2009).

    Article  Google Scholar 

  23. K. C. Owen, M. J. Wang, C. Persad and Z. Eliezer, Wear 120, 117 (1987).

    Article  CAS  Google Scholar 

  24. S.P. Dwidevi, S. Sharma, and R. K. Mishra, IJME 2014, 1 (2014).

  25. C. A. Vogiatzis, A. Tsouknidas, D. T. Kountouras and S. Skolianos, Materials and Design 85, 444 (2015).

    Article  CAS  Google Scholar 

  26. C. Wu, Z. Wang, Q. Q. Li, et al., Journal of Alloys and Compounds 617, 729 (2014).

    Article  CAS  Google Scholar 

  27. C. Wu, Z. Wang, Q. Q. Li and G. P. Shi, Journal of Asian Ceramic Societies 2, 322 (2014).

    Article  Google Scholar 

  28. R. Mangalaraja, B. Chandrasekhar and P. Manohar, Materials Science and Engineering: A 343, 71 (2003).

    Article  Google Scholar 

  29. S. Hoffmann, S. T. Norberg and Yoshimur M. Masahiro, Journal of Solid State Chemistry 178, 2897 (2005).

    Article  CAS  Google Scholar 

  30. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

    Google Scholar 

  31. C. Wu, Y. Li and Z. Wang, Journal of Alloys and Compounds 665, 37 (2016).

    Article  CAS  Google Scholar 

  32. A. Hannora and S. Ataya, Journal of Alloys and Compounds 658, 222 (2016).

    Article  CAS  Google Scholar 

  33. J. H. Shin, H. J. Choi and D. H. Bae, Materials Science and Engineering: A 578, 80 (2013).

    Article  CAS  Google Scholar 

  34. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein, Metallurgical Transactions A 17, 923 (1986).

    Article  Google Scholar 

  35. D. A. H. Hanaor and C. C. Sorrell, Journal of Materials Science 46, 855 (2011).

    Article  CAS  Google Scholar 

  36. A. Ibrahim, W. Mekprasart and W. Pecharapa, Materials Today: Proceedings 4, 6159 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by Al Imam Mohammad Ibn Saud Islamic University for the internal research Project No. 361405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabbah Ataya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latief, F.H., Alsaleh, N.A., Alrasheedi, N. et al. Effects of Oxidation and Alumina Addition on the Physical and Mechanical Properties of Ti/Al2O3 Composites Prepared by Semi-powder Metallurgy Method. Oxid Met 92, 561–572 (2019). https://doi.org/10.1007/s11085-019-09923-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09923-z

Keywords

Navigation