Skip to main content
Log in

Effect of Nb Addition on Oxidation Mechanisms of High Cr Ferritic Steel in Ar–H2–H2O

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High chromium ferritic steels are being used as construction materials for interconnects in solid oxide electrolysis cells (SOEC). Addition of niobium in the range of a few tenths of a percent is suitable for increasing the high-temperature creep strength of this type of ferritic steel. In the present work, the high-temperature isothermal oxidation behavior of a niobium containing ferritic steel at 800 °C was investigated in Ar–4%H2–4%H2O gas simulating the service environment in an SOEC (cathode side) and compared with that of a Nb-free counterpart alloy. Gravimetric data were correlated with the results from microstructural analyses using, among others, scanning and transmission electron microscopy as well as glow discharge optical emission spectroscopy. Atom probe tomography was used for obtaining atomic-scale insight into the segregation processes in external oxides and their interfaces. The oxidation rate was substantially higher for the Nb-containing than for the Nb-free alloy. Both alloys formed double-layered oxide scales consisting of inner chromia and outer MnCr2O4 spinel. Additionally, a thin layer of rutile-type Nb(Ti,Cr)O2 oxide of 200–300 nm thickness was observed at the scale–alloy interface in the Nb-containing steel. Nb addition to the alloy led to its segregation at chromia grain boundaries which affected the diffusion of Cr and other solute species such as Ti, Mn and Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Metallic interconnectors for solid oxide fuel cells—a review. Materials at High Temperatures 20, 2003 (115–127).

    CAS  Google Scholar 

  2. V. Shemet, J. Piron-Abellan, W. J. Quadakkers and L. Singheiser, Metallic Materials in Solid Oxide Fuel Cells. in Fuel Cell Technologies: State and Perspectives, vol. 7, eds. N. Sammes, A. Smirnova and O. Vasylyev (Springer, Berlin, 2004), pp. 97–106.

    Google Scholar 

  3. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser and W. J. Quadakkers, Oxidation induced lifetime limits of chromia forming ferritic interconnector steels. Journal of Fuel Cell Science and Technology 1, 2004 (30).

    Article  CAS  Google Scholar 

  4. R. Steinberger-Wilckens, L. Blum, H.-P. Buchkremer, et al., Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich. International Journal of Applied Ceramic Technology 3, 2006 (470–476).

    Article  CAS  Google Scholar 

  5. J. Malzbender, P. Batfalsky, R. Vaßen, V. Shemet and F. Tietz, Component interactions after long-term operation of an SOFC stack with LSM cathode. Journal of Power Sources 201, 2012 (196–203).

    Article  CAS  Google Scholar 

  6. P. Kofstad and R. Bredesen, High temperature corrosion in SOFC environments. Solid State Ionics 52, 1992 (69–75).

    Article  CAS  Google Scholar 

  7. Z. Yang, K. S. Weil, D. M. Paxton and J. W. Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. Journal of The Electrochemical Society 150, 2003 (A1188).

    Article  CAS  Google Scholar 

  8. J. W. Fergus, Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering: A 397, 2005 (271–283).

    Article  CAS  Google Scholar 

  9. I. Antepara, I. Villarreal, L. M. Rodríguez-Martínez, N. Lecanda, U. Castro and A. Laresgoiti, Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. Journal of Power Sources 151, 2005 (103–107).

    Article  CAS  Google Scholar 

  10. S. C. Singhal, Science and technology of solid-oxide fuel cells. MRS Bulletin 25, 2000 (16–21).

    Article  CAS  Google Scholar 

  11. L. Niewolak, L. Blum, R. Peters, D. Grüner and W. J. Quadakkers, Behavior of metallic components during 4,000 h operation of an SOFC stack with carbon containing fuel gas. Fuel Cells 16, 2016 (600–610).

    Article  CAS  Google Scholar 

  12. J.-P. Pfeifer, H. Holzbrecher, W. J. Quadakkers, U. Breuer and W. Speier, Quantitative analysis of oxide films on ODS-alloys using MCs+ -SIMS and e-beam SNMS. Fresenius Journal of Analytical Chemistry 346, 1993 (186–191).

    Article  CAS  Google Scholar 

  13. G. Cinti, G. Discepoli, G. Bidini, A. Lanzini and M. Santarelli, Co-electrolysis of water and CO2 in a solid oxide electrolyzer (SOE) stack. International Journal of Energy Research 40, 2016 (207–215).

    Article  CAS  Google Scholar 

  14. X. Zhang, Y. Song, G. Wang and X. Bao, Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes. Journal of Energy Chemistry 26, 2017 (839–853).

    Article  Google Scholar 

  15. C. Graves, S. D. Ebbesen and M. Mogensen, Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ionics 192, 2011 (398–403).

    Article  CAS  Google Scholar 

  16. N. H. Menzler, P. Batfalsky, L. Blum, et al., Studies of material interaction after long-term stack operation. Fuel Cells 7, 2007 (356–363).

    Article  CAS  Google Scholar 

  17. S. Fontana, R. Amendola, S. Chevalier, et al., Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources 171, 2007 (652–662).

    Article  CAS  Google Scholar 

  18. W. Quadakkers, Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs. Solid State Ionics 91, 1996 (55–67).

    Article  CAS  Google Scholar 

  19. J. P. Abelián, V. Shemet, F. Tietz, L. Singheiser, W. J. Quadakkers and A. Gil, Ferritic steel interconnect for reduced temperature SOFC. Proceedings of the Electrochemical Society 2001. https://doi.org/10.1149/200116.0811pv.

    Article  Google Scholar 

  20. Huczkowski P, Christiansen N, Shemet V, Singheiser L, Quadakkers WJ. Growth rates and electrical conductivity of oxide scales on ferritic steels proposed as interconnect materials for SOFCs. In: 6th European Solid Oxide Fuel Cell Forum, Proceedings, Vol. 3 (2004), pp. 1594–1601.

  21. C. S. Tedmon, The high-temperature oxidation of ductile Cr–Re alloys. Journal of The Electrochemical Society 113, 1966 (769).

    Article  CAS  Google Scholar 

  22. H. C. Graham and H. H. Davis, Oxidation/vaporization kinetics of Cr2O3. Journal of the American Ceramic Society 54, 1971 (89–93).

    Article  CAS  Google Scholar 

  23. C. A. Stearns, F. J. Kohl and G. C. Fryburg, Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000° to 1300°C. Journal of The Electrochemical Society 121, 1974 (945).

    Article  CAS  Google Scholar 

  24. Y. Yamamoto, M. P. Brady, Z. P. Lu, et al., Creep-resistant, Al2O3-forming austenitic stainless steels. Science. 316, 2007 (433–436).

    Article  CAS  Google Scholar 

  25. J. Froitzheim, G. H. Meier, L. Niewolak, et al., Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources 178, 2008 (163–173).

    Article  CAS  Google Scholar 

  26. Froitzheim J. Ferritic Steel Interconnectors and their Interactions with Ni Base Anodes in Solid Oxide Fuel Cells (SOFC), PhD Thesis, RWTH Aachen.

  27. B. Kuhn, C. A. Jimenez, L. Niewolak, et al., Effect of Laves phase strengthening on the mechanical properties of high Cr ferritic steels for solid oxide fuel cell interconnect application. Materials Science and Engineering: A 528, 2011 (5888–5899).

    Article  CAS  Google Scholar 

  28. H. S. Seo, D. W. Yun and K. Y. Kim, Oxidation behavior of ferritic stainless steel containing Nb, Nb–Si and Nb–Ti for SOFC interconnect. International Journal of Hydrogen Energy 38, 2013 (2432–2442).

    Article  CAS  Google Scholar 

  29. D. R. Diercks, J. Tong, H. Zhu, et al., Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria. Journal of Materials Chemistry A 4, 2016 (5167–5175).

    Article  CAS  Google Scholar 

  30. Y. M. Chen, T. Ohkubo, M. Kodzuka, K. Morita and K. Hono, Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scripta Materialia 61, 2009 (693–696).

    Article  CAS  Google Scholar 

  31. E. A. Marquis, N. A. Yahya, D. J. Larson, M. K. Miller and R. I. Todd, Probing the improbable: imaging C atoms in alumina. Materials Today 13, 2010 (34–36).

    Article  CAS  Google Scholar 

  32. J. H. Kim, B. K. Kim, D. I. Kim, P. P. Choi, D. Raabe and K. W. Yi, The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700°C for advanced thermal power plant applications. Corrosion Science 96, 2015 (52–66).

    Article  CAS  Google Scholar 

  33. P. Kontis, S. Pedrazzini, Y. Gong, P. A. J. Bagot, M. P. Moody and R. C. Reed, The effect of boron on oxide scale formation in a new polycrystalline superalloy. Scripta Materialia 127, 2017 (156–159).

    Article  CAS  Google Scholar 

  34. K. Stiller, M. Thuvander, I. Povstugar, P. P. Choi and H. O. Andrén, Atom probe tomography of interfaces in ceramic films and oxide scales. MRS Bulletin 41, 2016 (35–39).

    Article  CAS  Google Scholar 

  35. I. Povstugar, J. Weber, D. Naumenko, T. Huang, M. Klinkenberg and W. J. Quadakkers, Correlative atom probe tomography and transmission electron microscopy analysis of grain boundaries in thermally grown alumina scale. Microscopy and Microanalysis. 2019. https://doi.org/10.1017/s143192761801557x.

    Article  Google Scholar 

  36. K. A. Unocic, Y. Chen, D. Shin, B. A. Pint and E. A. Marquis, STEM and APT characterization of scale formation on a La, Hf,Ti-doped NiCrAl model alloy. Micron 109, 2018 (41–52).

    Article  CAS  Google Scholar 

  37. S. Pedrazzini, D. J. Child, G. West, et al., Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy. Scripta Materialia 113, 2016 (51–54).

    Article  CAS  Google Scholar 

  38. Y. Chen, R. C. Reed and E. A. Marquis, Interfacial solute segregation in the thermally grown oxide of thermal barrier coating structures. Oxid. Met. 82, 2014 (457–467).

    Article  CAS  Google Scholar 

  39. T. Boll, K. A. Unocic, B. A. Pint and K. Stiller, Interfaces in oxides formed on NiAlCr doped with Y, Hf, Ti, and B. Microscopy and Microanalysis 23, 2017 (396–403).

    Article  CAS  Google Scholar 

  40. K. Stiller, L. Viskari, G. Sundell, et al., Atom probe tomography of oxide scales. Oxid. Met. 79, 2013 (227–238).

    Article  CAS  Google Scholar 

  41. T. D. Nguyen, A. La Fontaine, L. Yang, J. M. Cairney, J. Zhang and D. J. Young, Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas. Corrosion Science 132, 2018 (125–135).

    Article  CAS  Google Scholar 

  42. A. La Fontaine, H. W. Yen, P. J. Felfer, S. P. Ringer and J. M. Cairney, Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scripta Materialia 99, 2015 (1–4).

    Article  CAS  Google Scholar 

  43. G. Sundell, M. Thuvander and H.-O. Andrén, Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corrosion Science 65, 2012 (10–12).

    Article  CAS  Google Scholar 

  44. D. Monceau and B. Pieraggi, Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxidation of Metals 50, 1998 (477–493).

    Article  CAS  Google Scholar 

  45. W. J. Quadakkers, D. Naumenko, E. Wessel and V. Kochubey, Growth rates of alumina scales on Fe–Cr–Al alloys. Oxidation of Metals 61, 2004 (17–37).

    Article  CAS  Google Scholar 

  46. Asensio-Jimenez C. Effect of composition, microstructure and component thickness on the oxidation behaviour of laves phase strengthened interconnect steel for solid oxide fuel cells (SOFC). RWTH Aachen, PhD Thesis. 2014;

  47. O. C. Hellman, J. A. Vandenbroucke, J. Rüsing, D. Isheim and D. N. Seidman, Analysis of three-dimensional atom-probe data by the proximity histogram. Microscopy and Microanalysis 6, 2000 (437–444).

    Article  CAS  Google Scholar 

  48. S. B. Newcomb, J. Smith and W. M. Stobbs, The application of high resolution electron microscopy to the study of oxidation. Journal of Microscopy 130, 1983 (137–146).

    Article  CAS  Google Scholar 

  49. T. D. Nguyen, J. Zhang and D. J. Young, Growth of Cr2O3 blades during alloy scaling in wet CO2 gas. Corrosion Science 133, 2018 (432–442).

    Article  CAS  Google Scholar 

  50. Singheiser L, Huczkowski P, Markus T, And, Quadakkers WJ. High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells Forschungszentrum. In: Shreirs Corrosion (2010), pp. 482–517.

  51. J. E. Harris, Vacancy injection during oxidation—a re-examination of the evidence. Acta Metallurgica 26, 1978 (1033–1041).

    Article  CAS  Google Scholar 

  52. R. Francis and D. G. Lees, Evidence for vacancy injection during the oxidation of iron. Materials Science and Engineering: A 120, 1989 (97–99).

    Article  Google Scholar 

  53. F. P. Glasser and E. F. Osborn, Phase equilibrium studies in the system CaO–Cr2O3–SiO2. Journal of the American Ceramic Society 15, 1958 (17). https://doi.org/10.1111/j.1151-2916.1958.tb12934.x.

    Article  Google Scholar 

  54. D. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2015).

    Google Scholar 

  55. L. Niewolak, F. Tietz and W. J. Quadakkers, Interconnects. in High-Temperature Solid Oxide Fuel Cells for the 21st Century, eds. K. Kendall and M. Kendall (Elsevier, Amsterdam, 2016), pp. 195–254. https://doi.org/10.1016/b978-0-12-410453-2.00007-5.

    Chapter  Google Scholar 

  56. R. J. D. Tilley, Defects in Solids, (John Wiley & Sons, Inc., Hoboken, 2008). https://doi.org/10.1002/9780470380758.

    Book  Google Scholar 

  57. W. D. Kingery, Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential. Journal of the American Ceramic Society 57, 1974 (1–8).

    Article  CAS  Google Scholar 

  58. R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 25, 1969 (925–946).

    Article  CAS  Google Scholar 

  59. S. B. Desu and D. A. Payne, Interfacial segregation in perovskites: I. Theory. Journal of the American Ceramic Society 73, 1990 (3391–3397).

    Article  CAS  Google Scholar 

  60. X. Guo and Y. Ding, Grain boundary space charge effect in Zirconia. Journal of The Electrochemical Society 151, 2004 (J1).

    Article  CAS  Google Scholar 

  61. J. A. S. Ikeda and Y.-M. Chiang, Space charge segregation at grain boundaries in titanium dioxide: I, relationship between lattice defect chemistry and space charge potential. Journal of the American Ceramic Society 76, 1993 (2437–2446).

    Article  CAS  Google Scholar 

  62. A. Holt and P. Kofstad, Electrical conductivity of Cr2O3 doped with TiO2. Solid State Ionics 117, 1999 (21–25).

    Article  CAS  Google Scholar 

  63. Ennis PJ, Quadakkers WJS. Proceedings of the Conference of High Temperature AlloysTheir Exploitable Potential, October 1517, 1985, Petten, NL (Elsevier, London, 1988), pp. 465–474.

  64. J. Nowotny, Surface and Grain Boundary Segregation in Metal Oxides. in Surfaces and Interfaces of Ceramic Materials, eds. L. C. Dufour and C. Monty (Springer, Dordrecht, 1989), pp. 205–239. https://doi.org/10.1007/978-94-009-1035-5_13.

    Chapter  Google Scholar 

  65. J. M. Polfus, B. Yildiz and H. L. Tuller, Origin of fast oxide ion diffusion along grain boundaries in Sr-doped LaMnO3. Physical Chemistry Chemical Physics 20, 2018 (19142–19150).

    Article  CAS  Google Scholar 

  66. K. L. Kliewer and J. S. Koehler, Space charge in ionic crystals. I. General approach with application to NaCl. Physical Review 140, 1965 (1226–1240).

    Article  CAS  Google Scholar 

  67. J. D. Eshelby, C. W. A. Newey, P. L. Pratt and A. B. Lidiard, Charged dislocations and the strength of ionic crystals. Philosophical Magazine 3, 1958 (75–89).

    Article  CAS  Google Scholar 

  68. M. Karahka and H. J. Kreuzer, The mystery of missing species in atom probe tomography of composite materials. Microscopy and Microanalysis 22, 2016 (658–659).

    Article  Google Scholar 

  69. A. Devaraj, R. Colby, W. P. Hess, D. E. Perea and S. Thevuthasan, Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. The Journal of Physical Chemistry Letters 4, (6), 2013 (993–998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (A.V.) is grateful to the HiTEC Graduate school of Forschungszentrum Jülich GmbH, Germany, for providing financial support for his stay in Forschunszentrum Jülich. The authors acknowledge colleagues from the Institute of Microstructure and Properties of Materials (IEK-2), Forschungszentrum Jülich for assistance with the various measurements: Egbert Wessel (SEM and TEM), Pawel Huczkowski (Raman Spectroscopy), Mirko Ziegner (XRD) and Heiko Cosler (TGA). A.V would like to thank Dr. H. Annepu for helping with python to develop Fig. 9b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Povstugar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vayyala, A., Povstugar, I., Galiullin, T. et al. Effect of Nb Addition on Oxidation Mechanisms of High Cr Ferritic Steel in Ar–H2–H2O. Oxid Met 92, 471–491 (2019). https://doi.org/10.1007/s11085-019-09933-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09933-x

Keywords

Navigation