Skip to main content
Log in

Effect of Surface Finish on High-Temperature Oxidation of Steels in CO2, Supercritical CO2, and Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Current and future power systems require steels resistant to high-temperature oxidation in CO2-rich environments. The introduction of structural defects by various surface treatments can profoundly affect the oxidation/corrosion behavior of steels in many environments. This effect is largely unexplored for steels exposed to high-temperature CO2, which is the focus of this work. We prepared Grade 22, Grade 91, 347H, and 310S steels with three different surface finishes, ranging from little to substantial surface damage, and exposed the steels to 1 bar CO2, 200 bar supercritical CO2, and laboratory air at 550 °C for up to 1500 h. Surface finish had little impact on the oxidation behavior of low-Cr (2 wt%) Grade 22 and high-Cr (25 wt%) 310S steels. In contrast, intermediate-Cr steels Grade 91 (8 wt%) and 347H (17 wt%) generally showed improved oxidation and carburization resistance with increasing extent of surface damage, which was attributed to the delay or prevention of the onset of Fe-rich oxide nodule growth. Comparison between exposure environments suggests that this effect is more complex for CO2 compared to air and that it is additionally affected by CO2 pressure. The results suggest that surface treatments should be considered as one approach to achieve improved corrosion resistance in high-temperature CO2, particularly for steels containing Cr levels near the transition that is required to form and maintain a protective Cr-rich oxide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Progress in Energy and Combustion Science 31, 2005 (283).

    Article  CAS  Google Scholar 

  2. K. Brun, P. Friedman and R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (sCO 2 ) Based Power Cycles, (Woodhead Publishing, Cambridge, 2017).

    Google Scholar 

  3. R. Allam, et al., Energy Procedia 114, 2017 (5948).

    Article  CAS  Google Scholar 

  4. H. E. McCoy, Corrosion 21, 1965 (84).

    Article  CAS  Google Scholar 

  5. W. R. Martin and J. R. Weir, Journal of Nuclear Materials 16, 1965 (19).

    Article  CAS  Google Scholar 

  6. J. E. Antill, K. A. Peakall and J. B. Warburton, Corrosion Science 8, 1968 (689).

    Article  CAS  Google Scholar 

  7. G. B. Gibbs, Oxidation of Metals 7, 1973 (173).

    Article  CAS  Google Scholar 

  8. G. H. Meier, et al., Oxidation of Metals 74, 2010 (319).

    Article  CAS  Google Scholar 

  9. T. Gheno, D. Monceau and D. J. Young, Corrosion Science 64, 2012 (222).

    CAS  Google Scholar 

  10. D. J. Young and J. Zhang, JOM 70, 2018 (1493).

    Article  CAS  Google Scholar 

  11. Y. Gong, et al., Acta Materialia 130, 2017 (361).

    Article  CAS  Google Scholar 

  12. T. Furukawa, Y. Inagaki and M. Aritomi, Progress in Nuclear Energy 53, 2011 (1050).

    Article  CAS  Google Scholar 

  13. L. Tan, M. Anderson, D. Taylor and T. R. Allen, Corrosion Science 53, 2011 (3273).

    Article  CAS  Google Scholar 

  14. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson and T. R. Allen, Corrosion Science 60, 2012 (246).

    Article  CAS  Google Scholar 

  15. H. J. Lee, H. Kim, S. H. Kim and C. Jang, Corrosion Science 99, 2015 (227).

    Article  CAS  Google Scholar 

  16. R. I. Olivares, D. J. Young, P. Marvig and W. Stein, Oxidation of Metals 84, 2015 (585).

    Article  CAS  Google Scholar 

  17. G. R. Holcomb, C. Carney and Ö. N. Doğan, Corrosion Science 109, 2016 (22).

    Article  CAS  Google Scholar 

  18. S. C. Kung, J. P. Shingledecker, D. Thimsen, G. Wright, B. M. Tossey and A. S. Sabau: Oxidation/Corrosion in Materials for Supercritical CO2 Power Cycles. in The 5th International Supercritical CO 2 Power Cycles Symposium (San Antonio, TX, 2016).

  19. F. Rouillard and T. Furukawa, Corrosion Science 105, 2016 (120).

    Article  CAS  Google Scholar 

  20. R. G. Brese, J. R. Keiser and B. A. Pint, Oxidation of Metals 87, 2017 (631).

    Article  CAS  Google Scholar 

  21. B. Adam, L. Teeter, J. Mahaffey, M. Anderson, L. Árnadóttir and J. D. Tucker, Oxidation of Metals 90, 2018 (453).

    Article  CAS  Google Scholar 

  22. F. Masuyama, ISIJ International 41, 2001 (612).

    Article  CAS  Google Scholar 

  23. B.M. Tossey, H. Khan, T. Andress: Oxidation Resistance of Shoot Peened Austenitic Stainless Steel Superheater Tubes in Steam. in Advances in Materials Technology for Fossil Power Plants, Albufeira, Algarve, Portugal, eds. J. Parker, J. Shingledecker and J. Siefert (Electric Power Research Institute, Inc., 2016), pp. 855.

  24. S. Yli-Olli, S. Tuurna, P. Auerkari, S. Penttila: Evaluating the Effect of Cold Work on Supercritical Oxidation of Boiler Tube Materials. in Advances in Materials Technology for Fossil Power Plants, Albufeira, Algarve, Portugal, eds. J. Parker, J. Shingledecker and J. Siefert. (Electric Power Research Institute, Inc., 2016), pp. 823.

  25. I. G. Wright and R. B. Dooley, International Materials Reviews 55, 2010 (129).

    Article  CAS  Google Scholar 

  26. L. Jian, Journal of Materials Science and Technology 15, 1999 (193).

    Article  Google Scholar 

  27. T. Wang, J. Yu and B. Dong, Surface and Coatings Technology 200, 2006 (4777).

    Article  CAS  Google Scholar 

  28. X. Wang and D. Li, Electrochimica Acta 47, 2002 (3939).

    Article  CAS  Google Scholar 

  29. H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf, Oxidation of Metals 50, 1998 (241).

    Article  CAS  Google Scholar 

  30. C.-Y. Lin, C.-H. Chang and W.-T. Tsai, Oxidation of Metals 62, 2004 (153).

    Article  CAS  Google Scholar 

  31. R. P. Oleksak, J. H. Tylczak, C. S. Carney, G. R. Holcomb and Ö. N. Doğan, JOM 70, 2018 (1527).

    Article  CAS  Google Scholar 

  32. R. P. Oleksak, C. S. Carney, G. R. Holcomb and Ö. N. Doğan, Oxidation of Metals 90, 2017 (27).

    Article  CAS  Google Scholar 

  33. R. P. Oleksak, J. H. Tylczak, G. R. Holcomb and Ö. N. Doğan, Corrosion Science 157, 2019 (20).

  34. G. Liu, J. Lu and K. Lu, Materials Science and Engineering: A 286, 2000 (91).

    Article  Google Scholar 

  35. M. Smaga, F. Walther and D. Eifler, Materials Science and Engineering: A 483–484, 2008 (394).

    Article  CAS  Google Scholar 

  36. Z. X. Xia, C. Zhang, X. F. Huang, W. B. Liu and Z. G. Yang, Scientific Reports 5, 2015 (1).

  37. A. K. Rai, et al., Surface and Coatings Technology 358, 2019 (125).

    Article  CAS  Google Scholar 

  38. H. W. Zhang, Z. K. Hei, G. Liu, J. Lu and K. Lu, Acta Materialia 51, 2003 (1871).

    Article  CAS  Google Scholar 

  39. G. Williamson and W. Hall, Acta Metallurgica 1, 1953 (22).

    Article  CAS  Google Scholar 

  40. T. Itagaki, K. Nakazato, H. Kutsumi and S. Torizuka, Journal of the Japan Institute of Metals 67, 2003 (189).

    Article  CAS  Google Scholar 

  41. G. R. Holcomb, Journal of the Electrochemical Society 156, 2009 (C292).

    Article  CAS  Google Scholar 

  42. J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

  43. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 2012 (27).

    Article  CAS  Google Scholar 

  44. S. Bouhieda, F. Rouillard and K. Wolski, Materials at High Temperatures 29, 2012 (151).

    Article  CAS  Google Scholar 

  45. B. A. Pint and K. A. Unocic, JOM 70, 2018 (1511).

    Article  CAS  Google Scholar 

  46. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia 77, 2014 (29).

    Article  CAS  Google Scholar 

  47. S. Tsai, A. Huntz and C. Dolin, Materials Science and Engineering: A 212, 1996 (6).

    Article  Google Scholar 

  48. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2011 (2767).

    Article  CAS  Google Scholar 

  49. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Vol. 2. (Elsevier, 2016)

Download references

Acknowledgements

This work was performed in support of the U.S. Department of Energy’s Fossil Energy Crosscutting Technology Research Program. The research was executed through the NETL Research and Innovation Center’s Advanced Alloy Development Field Work Proposal. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003. We thank Christopher McKaig (NETL) for preparation of the sample cross sections and Richard Gregory (NETL) for performing the air oxidation exposures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oleksak.

Ethics declarations

Disclaimer

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksak, R.P., Holcomb, G.R., Carney, C.S. et al. Effect of Surface Finish on High-Temperature Oxidation of Steels in CO2, Supercritical CO2, and Air. Oxid Met 92, 525–540 (2019). https://doi.org/10.1007/s11085-019-09938-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09938-6

Keywords

Navigation