Skip to main content
Log in

Nodular Corrosion of Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr Alloy in 500 °C Steam Caused by High-temperature Processing

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr alloy samples prepared by low-temperature process (LTP) and high-temperature process (HTP) show different corrosion behaviors in 500 °C steam. The former exhibits uniform corrosion, while the latter exhibits nodular corrosion casually. The occurrence of nodular corrosion on HTP samples is attributed to the formation of local alloying elements depletion region in the Zr matrix. During hot rolling at 800 °C, transformation of zirconium from α-phase to β-phase happens locally. Alloying elements migrate to β-phase from its neighboring α-phase. The local β-phase dissolves in the subsequent cold rolling and final annealing, leaving the microstructure with agglomeration of precipitate particles and neighboring alloying elements depletion regions in Zr matrix. And the undesirable microstructure becomes the causation of nodular corrosion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Cox, Journal of Nuclear Materials 336, 2005 (331–368).

    Article  CAS  Google Scholar 

  2. D. G. Franklin, in Zirconium in the Nuclear Industry: Sixteenth International Symposium, eds. M. Limback and P. Barberis (ASTM International, West Conshohocken, 2011), pp. 17–36.

    Chapter  Google Scholar 

  3. N. Ramasubramanian, Journal of Nuclear Materials 119, 1983 (208–218).

    Article  CAS  Google Scholar 

  4. A. W. Urquhart and D. A. Verilyea, Journal of Nuclear Materials 62, 1976 (111–114).

    Article  CAS  Google Scholar 

  5. P. Rudling and G. Wikmark, Journal of Nuclear Materials 265, 1999 (44–59).

    Article  CAS  Google Scholar 

  6. L. Lunde and K. Videm, in Zirconium in the Nuclear Industry: Fourth International Symposium, eds. T. H. Schemel and T. P. Papazoglon (ASTM International, West Conshohocken, 1979), pp. 40–49.

    Chapter  Google Scholar 

  7. R. M. Kruger, R. B. Adamson and S. S. Brenner, Journal of Nuclear Materials 189, 1992 (193–200).

    Article  CAS  Google Scholar 

  8. G. Maussner, E. Steinberg and E. Tenckhoff, in Zirconium in the Nuclear Industry: Seventh International Symposium, eds. R. B. Adamson and L. F. P. Van Swan (ASTM International, West Conshohocken, 1987), pp. 307–320.

    Chapter  Google Scholar 

  9. D. Charquet, Journal of Nuclear Materials 288, 2001 (237–240).

    Article  CAS  Google Scholar 

  10. B. Cheng and R. B. Adamson, in Zirconium in the Nuclear Industry: Seventh International Symposium, eds. R. B. Adamson and L. F. P. Van Swan (ASTM International, West Conshohocken, 1987), pp. 387–416.

    Chapter  Google Scholar 

  11. K. Ogata, in Zirconium in the Nuclear Industry: Eighth International Symposium, eds. L. F. R. Van Swan and C. M. Eucken (ASTM International, West Conshohocken, 1987), pp. 346–359.

    Google Scholar 

  12. D. Charquet, B. Tricot and J.-F. Wadier, in Zirconium in the Nuclear Industry: Eighth International Symposium, eds. L. F. R. Van Swan and C. M. Eucken (ASTM International, West Conshohocken, 1989), pp. 374–391.

    Chapter  Google Scholar 

  13. S. J. Xie, B. X. Zhou, X. Liang, W. Q. Liu, H. Li, Q. Li, M. Y. Yao and J. L. Zhang, Corrosion Science 126, 2017 (44–54).

    Article  CAS  Google Scholar 

  14. B. X. Zhou, M. Y. Yao, Q. Li, S. Xia, W. Q. Liu and Y. L. Chu, Rare Metal Materials and Engineering 36, 2007 (1317–1321).

    CAS  Google Scholar 

  15. Y. H. Jeong, H. G. Kim, D. J. Kim, B. K. Choi and J. H. Kim, Journal of Nuclear Materials 323, 2003 (72–80).

    Article  CAS  Google Scholar 

  16. S. J. Kim, H. S. Hong and Y. M. Oh, Journal of Nuclear Materials 306, 2002 (194–201).

    Article  CAS  Google Scholar 

  17. C. Toffolon-Masclet, T. Guilbert and J. G. Brachet, Journal of Nuclear Materials 372, 2008 (367–378).

    Article  CAS  Google Scholar 

  18. T. G. Wei, C. S. Long and H. S. Chen, The Journal of Alloys and Compounds 731, 2018 (126–134).

    Article  CAS  Google Scholar 

  19. J. Wang, H. Y. Fan, J. Xiong, H. Liu, Z. Miao, S. H. Ying and G. Yang, Nuclear Engineering and Design 241, 2011 (471–475).

    Article  CAS  Google Scholar 

  20. D. F. Taylor, Journal of Nuclear Materials 277, 2000 (295–314).

    Article  CAS  Google Scholar 

  21. Y. Etoh, Journal of Nuclear Science and Technology 26, 1989 (752–759).

    Article  CAS  Google Scholar 

  22. A. T. Motta, A. Yilmazbayhan, M. J. Gomes da Silva, R. J. Comstock, G. S. Was, J. T. Busby, E. Gartner, Q. Peng, Y. H. Jeong and J. Y. Park, Journal of Nuclear Materials 371, 2007 (61–75).

    Article  CAS  Google Scholar 

  23. B. X. Zhou, in Zirconium in the Nuclear Industry: Eighth International Symposium, eds. L. F. R. Van Swan and C. M. Eucken (ASTM International, West Conshohocken, 1989), pp. 360–373.

    Chapter  Google Scholar 

  24. D. J. Park and J. Y. Park, Corrosion Science 69, 2013 (61–66).

    Article  CAS  Google Scholar 

  25. D. J. Park, J. Y. Park and Y. H. Jeong, Journal of Nuclear Materials 412, 2011 (233–238).

    Article  CAS  Google Scholar 

  26. A. T. Motta, M. J. Gomes da Silva, A. Yilmazbayhan, R. J. Comstock, Z. Cai and B. Lai, in Zirconium in the Nuclear Industry: Fifth International Symposium, eds. B. Kammenzind and M. Limback (ASTM International, West Conshohocken, 2008), pp. 486–505.

    Google Scholar 

  27. Y. Dali, M. Tupin, P. Bossis, M. Pijolat, Y. Wouters and F. Jomard, Journal of Nuclear Materials 426, 2012 (148–159).

    Article  CAS  Google Scholar 

  28. P. Hurst and C. Tyzack, Effect of Enviroment on Material Properties in Nuclear Systems, (Institution of Civil Engineers, London, 1971), pp. 37–49.

    Book  Google Scholar 

  29. B. Cheng, H. A. Levin, R. B. Adamson, M. O. Marlowe and V. L. Monroe, in Zirconium in the Nuclear Industry: Seventh International Symposium, eds. R. B. Adamson and L. F. P. Van Swan (ASTM International, West Conshohocken, 1987), pp. 257–283.

    Chapter  Google Scholar 

  30. D. M. Rishel, K. L. Eklund and B. F. Kammenzind, in Zirconium in the Nuclear Industry: Eighth International Symposium, eds. B. Kammenzind and M. Limback (ASTM International, West Conshohocken, PA, 1987), pp. 326–359.

    Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (No. 51801195). The authors want to acknowledge their collaborators from Northwestern Institute for Non Ferrous Metals (Xi’ an, China) for the preparation of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianguo Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Dai, X., Chen, B. et al. Nodular Corrosion of Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr Alloy in 500 °C Steam Caused by High-temperature Processing. Oxid Met 92, 493–504 (2019). https://doi.org/10.1007/s11085-019-09936-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09936-8

Keywords

Navigation