Skip to main content
Log in

The Effect of Air Fraction in Steam on the Embrittlement of Zry-4 Fuel Cladding Oxidized at 1273–1573 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper deals with the effect of air fraction in steam on the embrittlement of Zry-4 nuclear fuel cladding tubes exposed under steam–air atmospheres (air fractions of 10–100%) in the temperature range of 1273–1573 K. Ring compression tests were carried out in order to evaluate the embrittlement of fuel cladding. Furthermore, the microhardness of prior β-phase was measured and fractured surfaces were observed under scanning electron microscopy. The degree of the embrittlement is discussed against the results of metallographic and hydrogen analyses. The microstructure and the hydrogen pickup were substantially affected by nitride formation. Accelerated oxidation kinetics enhanced shrinking of the prior β-region. The enhanced hydrogen absorption resulted in the increased microhardness of prior β-phase. The degree of the fuel cladding embrittlement, expressed by the plastic strain at failure and the maximum load, correlated well with the microhardness and the thickness of prior β-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Steinbrück, A. Miassoedov, G. Schanz, L. Sepold, U. Stegmaier and J. Stuckert, Nuclear Engineering and Design 236, 2006 (1709–1719).

    Article  Google Scholar 

  2. M. Steinbrück, Journal of Nuclear Materials 392, 2009 (531–544).

    Article  Google Scholar 

  3. C. Duriez, M. Steinbrück, D. Ohai, T. Meleg, J. Birchley and T. Haste, Nuclear Engineering and Design 239, 2009 (244–253).

    Article  CAS  Google Scholar 

  4. A. Sawada, M. Amaya, Oxidation behavior of Zircaloy cladding under nitrogen containing atmosphere, in WRFPM 2014, Sep 14–17, 2014, Sendai, Japan.

  5. M. Negyesi, M. Amaya, Oxidation behavior of Zry-4 in steam-air mixtures at high temperature, in Top fuel 2016, September 11–16, 2016, Boise, USA.

  6. M. Negyesi and M. Amaya, Journal of Nuclear Science and Technology 54, 2017 (1143–1155).

    Article  CAS  Google Scholar 

  7. M. Negyesi and M. Amaya, Annals of Nuclear Energy 114, 2018 (52–65).

    Article  CAS  Google Scholar 

  8. M. Negyesi and M. Amaya, Journal of Nuclear Materials 524, 2019 (263–277).

    Article  CAS  Google Scholar 

  9. M. Grosse, S. Pulvermacher, M. Steinbrück and B. Schillinger, Physica B 551, 2018 (244–248).

    Article  CAS  Google Scholar 

  10. C. Duriez, O. Coindreau, M. Gestin, et al., Journal of Nuclear Materials 513, 2019 (152–174).

    Article  CAS  Google Scholar 

  11. M. Grosse, M. Steinbrueck, L. Ott, A. Kaestner, Hydrogen uptake of Zircaloy-4 during reaction in nitrogen/steam atmosphere in the temperature range of 600–1100 °C, in Proceedings of the ICAPP 2015, May 3–6, 2015, Nice, France.

  12. H. M. Chung, Nuclear Engineering and Technology 37, 2005 (327–362).

    CAS  Google Scholar 

  13. M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents, U.S. NRC, NUREG/CR-6967, 2008.

  14. C. Grandjean, G. Hache, A state-of-the-art review of past programs devoted to fuel behavior under loss-of-coolant accident. Part 3. Cladding oxidation. Resistance to quench and post-quench loads, IRSN, DPAM/SEMCA 2008-93, 2008.

  15. F. Nagase, T. Chuto and T. Fuketa, Journal of Nuclear Science and Technology 48, 2011 (1369–1376).

    Article  CAS  Google Scholar 

  16. E. Zuzek and J. P. Abriata, Bulletin of Alloy Phase Diagrams 11, 1990 (385–395).

    Article  CAS  Google Scholar 

  17. M. Steinbrück, Journal of Nuclear Materials 334, 2004 (58–64).

    Article  Google Scholar 

  18. K. Park and R. D. Olander, Journal of the American Ceramic Society 74, 1991 (72–77).

    Article  CAS  Google Scholar 

  19. M. Miyake, M. Uno and S. Yamanaka, Journal of Nuclear Materials 270, 1999 (233–241).

    Article  CAS  Google Scholar 

  20. J. Brachet, V. Vandenberghe-Maillot, L. Portier, et al., Journal of ASTM International 5, (5), 2008 (1–28).

    Article  Google Scholar 

  21. A. Stern, J. Brachet, V. Maillot, et al., Journal of ASTM International 5, (4), 2008 (1–20).

    Article  Google Scholar 

  22. M. Negyesi, V. Kloucek, J. Lorincik, et al., Nuclear Engineering and Design 261, 2013 (260–268).

    Article  CAS  Google Scholar 

  23. R. E. Pawel, Journal of Nuclear Materials 50, 1974 (247–258).

    Article  CAS  Google Scholar 

  24. A. Sawatzky, Proposed Criterion for the Oxygen Embrittlement of Zircaloy-4 Fuel Cladding, in Proceedings of 4th Symposium On Zirconium in the Nuclear Industry, June 27–29, Stratford-on-Avon, UK, 1978.

  25. H. M. Chung, T. F. Kassner, Embrittlement Criteria for Zircaloy Fuel Cladding Applicable to Accident Situations in Light-Water Reactors, NUREG/CR-1344, ANL-79-48, Argonne National Laboratory, 1980.

  26. J. Desquines, D. Drouan, S. Guilbert and P. Lacote, Journal of Nuclear Materials 469, 2016 (20–31).

    Article  CAS  Google Scholar 

  27. L. Portier, T. Bredel, J. Brachet, V. Maillot, J. Mardon and A. Lesbros, Journal of ASTM International 2, (2), 2005 (103–126).

    Article  Google Scholar 

  28. M. Kuroda, D. Setoyama, M. Uno and S. Yamanaka, Journal of Alloys and Compounds 368, 2004 (211–214).

    Article  CAS  Google Scholar 

  29. H. Uetsuka, T. Furuta and S. Kawasaki, Journal of Nuclear Science and Technology 18, (9), 1981 (705–717).

    Article  CAS  Google Scholar 

  30. A. Anttila, J. Raeisaenen and J. Keinonen, Journal of the Less Common Metals 96, 1984 (257–262).

    Article  CAS  Google Scholar 

  31. X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon and J. C. Brachet, Journal of Nuclear Materials 377, 2008 (359–369).

    Article  CAS  Google Scholar 

  32. J. J. Kearns, Journal of Nuclear Materials 43, 1972 (330–338).

    Article  CAS  Google Scholar 

  33. V. Busser, M.-C. Baietto-Dubourg, J. Desquines, C. Duriez and J.-P. Mardon, Journal of Nuclear Materials 384, 2009 (87–95).

    Article  CAS  Google Scholar 

  34. J. Herb, J. Sievers and H.-G. Sonnenburg, Nuclear Engineering and Design 273, 2014 (615–630).

    Article  CAS  Google Scholar 

  35. M. Steinbrück and S. Schaffer, Oxidation of Metals 85, 2015 (245–262).

    Article  Google Scholar 

  36. M. Grosse, M. Steinbrueck, Y. Maeng, J. Sung, Influence of the steam and oxygen flow rate on the reaction of zirconium in steam/nitrogen and oxygen/nitrogen atmospheres, in ICAPP 2016, April 17–20, San Francisco, USA, 2016.

  37. M. Steinbrück, F. O. da Silva and M. Grosse, Journal of Nuclear Materials 490, 2017 (226–237).

    Article  Google Scholar 

  38. J. P. Abriata, J. Garces and R. Versaci, Bulletin of Alloy Phase Diagrams 7, 1986 (116–124).

    Article  CAS  Google Scholar 

  39. M. Steinbrück, Journal of Nuclear Materials 447, (1–3), 2014 (46–55). https://doi.org/10.1016/j.jnucmat.2013.12.024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help contributed by other members of Fuel Safety Research Group of Nuclear Safety Research Center. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Negyesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negyesi, M., Amaya, M. The Effect of Air Fraction in Steam on the Embrittlement of Zry-4 Fuel Cladding Oxidized at 1273–1573 K. Oxid Met 92, 439–455 (2019). https://doi.org/10.1007/s11085-019-09939-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09939-5

Keywords

Navigation