Skip to main content
Log in

Reactive Element Effect Applied by Alloying and SiHfBCN Coating on the Oxidation of Pure Chromium

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To reduce scale spallation, scale volatilization, and nitrogen embrittlement in Cr-based systems, reactive elements such as Y, Zr, Hf, La, and Ce were introduced as oxide dispersions into pure chromium. In addition, Hf coating systems were investigated. One was a Hf sputter layer with varying thickness, and the other one a Hf-containing precursor ceramic, i.e., SiHfBCN, which may be considered as suitable material for environmental barrier coating applications. Oxidation tests at \(1050\,^{\circ }\hbox {C}\) in synthetic air for 50 h were carried out using thermogravimetric analysis. The samples were analyzed via X-ray diffraction, optical microscope, electron microprobe analysis, and scanning electron microscope. All reactive elements led to a decrease in total mass gain after oxidation compared to pure Cr, with Y and Zr showing the strongest effect. Improvements in oxide attachment, oxide growth rate, volatilization rate as well as nitridation resistance were observed. Concerning these experiments, Y showed the most promising results. Concerning Hf, coating systems, especially SiHfBCN, showed a higher effect on improving the oxidation resistance. The reason for this outcome might be that not only Hf is active in the precursor ceramic layer. A more complex oxide layer has formed, which consisted of not only Cr2O3 but also of Hf and Si oxides. This layer prevents the material from any nitridation under the selected oxidation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. M. Pollock and S. Tin, Journal of propulsion and power 22, 361 (2006).

    Article  CAS  Google Scholar 

  2. S. E. Plansee (2018). https://www.plansee.com/de/werkstoffe/chrom.html Werkstoffe Chrom.

  3. A. S. Dorcheh and M. C. Galetz, JOM 68, 2793 (2016).

    Article  CAS  Google Scholar 

  4. 2017 U.S. Geological Survey. Mineral Commodity Summaries 2017. U.S. Geological Survey, 2017.

  5. W. H. Smith and A. U. Seybolt, Journal of the Electrochemical Society 103, 347 (1956).

    Article  CAS  Google Scholar 

  6. H. B. Goodwin, E. A. Gilbert, C. M. Schwartz and C. T. Greenidge, Journal of the Electrochemical Society 100, 152 (1953).

    Article  CAS  Google Scholar 

  7. E. A. Brandes, H. T. Greenaway and H. E. N. Stone, Nature 178, 587 (1956).

    Article  CAS  Google Scholar 

  8. American society for metals, ed. Ductile Chromium and its Alloys. (American Society for Metals, 1957).

  9. K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Materials Transactions 47, 2540 (2006).

    Article  CAS  Google Scholar 

  10. A. U. Seybolt and D. H. Haman, Transactions of the Metallurgical Society of AIME 230, 1294 (1964).

    CAS  Google Scholar 

  11. P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  12. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 99, 402 (1952).

    Article  CAS  Google Scholar 

  13. H. Taimatsu, Journal of the Electrochemical Society 146, 3686 (1999).

    Article  CAS  Google Scholar 

  14. A. M. Dymshits, P. I. Dorogokupets, I. S. Sharygin, K. D. Litasov, A. Shatskiy, S. V. Rashchenko, E. Ohtani, A. Suzuki and Y. Higo, Physics and Chemistry of Minerals 43, 447 (2016).

    Article  CAS  Google Scholar 

  15. J. A. Haynes, B. A. Pint, W. D. Porter and I. G. Wright, Materials at High Temperatures 21, 87 (2004).

    Article  CAS  Google Scholar 

  16. P. Kofstad and K. P. Lillerud, Oxidation of Metals 17, 177 (1982).

    Article  CAS  Google Scholar 

  17. L. B. Pfeil, UK patent No. 574088. 1945.

  18. L. B. Pfeil, UK patent No. 459848. 1937.

  19. D. Caplan and M. Cohen, Journal of the Electrochemical Society 108, 438 (1961).

    Article  CAS  Google Scholar 

  20. W. C. Hagel, Journal of the Electrochemical Society 109, C78 (1962).

    Google Scholar 

  21. P. Y. Hou, Materials Science Forum 696, 39 (2011).

    Article  CAS  Google Scholar 

  22. B. A. Pint, Progress in understanding the reactive element effect since the Whittle and Stringer literature review, in Proceedings John Stringer Symposium on High Temperature Corrosion, (ASM International Materials Park, Ohio, 2003), p. 9.

  23. S. Chevalier, Materials and Corrosion 65, 109 (2014).

    Article  CAS  Google Scholar 

  24. J. Quadakkers and L. Singheiser, Materials Science Forum 369, 77 (2001).

    Article  Google Scholar 

  25. J. Stringer, B. A. Wilcox and R. I. Jaffee, Oxidation of Metals 5, 11 (1972).

    Article  CAS  Google Scholar 

  26. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London A 295, 309 (1980).

    Article  CAS  Google Scholar 

  27. P. Papaiacovou, R. J. Hussey, D. F. Mitchell and M. J. Graham, Corrosion Science 30, 451 (1990).

    Article  CAS  Google Scholar 

  28. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals 29, 445 (1988).

    Article  CAS  Google Scholar 

  29. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell and M. J. Graham, Oxidation of Metals 34, 173 (1990).

    Article  CAS  Google Scholar 

  30. S. Roure, F. Czerwinski and A. Petric, Oxidation of Metals 42, 75 (1994).

    CAS  Google Scholar 

  31. W. E. King, J.-H. Park, J. L. Routbort and K. C. Goretta, Oxidation of Metals 29, 217 (1988).

    Article  CAS  Google Scholar 

  32. Y. Zhang, W. W. Gerberich and D. A. Shores, Journal of Materials Research 12, 697 (1997).

    Article  Google Scholar 

  33. D. Zhu, J. H. Stout, J. C. Nelson and D. A. Shores, Materials Science Forum 251, 437 (1997).

    Article  Google Scholar 

  34. W. J. Quadakkers, Materials and Corrosion 41, 659 (1990).

    Article  CAS  Google Scholar 

  35. N. Patibandla, T. A. Ramanarayanan and F. Cosandey, Journal of the Electrochemical Society 138, 2176 (1991).

    Article  CAS  Google Scholar 

  36. K. Przybylski and G. J. Yurek, Materials Science Forum 43, 1 (1989).

    Article  CAS  Google Scholar 

  37. M. J. Bennett, A. T. Tuson, D. P. Moon, J. M. Titchmarsh, P. Gould and H. M. Flower, Surface and Coatings Technology 51, 65 (1992).

    Article  CAS  Google Scholar 

  38. L. V. Ramanathan, M. F. Pillis and S. M. C. Fernandes, Journal of Materials Science 43, 530 (2008).

    Article  CAS  Google Scholar 

  39. S. Chevalier, G. Bonnet, G. Borchardt, J. C. Colson and J. P. Larpin, Materials Science Forum 369, 327 (2001).

    Article  Google Scholar 

  40. A. Venskutonis, W. Glatz, and G. Kunschert, P/M processing of ODS Cr-and FeCr-based alloys for solid oxide fuel cell applications, in Proceedings PLANSEE Seminar 2005, PLANSEE SE, 2005.

  41. R. J. Hussey and M. J. Graham, Oxidation of Metals 45, 349 (1996).

    Article  CAS  Google Scholar 

  42. J. Yuan, SiHf(B)CN-based ultra-high temperature ceramic nanocomposites: Single-source precursor synthesis and behavior in hostile environments. Ph.D. thesis, (Technische Universität Darmstadt, 2015).

  43. J. Yuan, M. Galetz, X. G. Luan, C. Fasel, R. Riedel and E. Ionescu, Journal of the European Ceramic Society 36, 3021 (2016 ).

    Article  CAS  Google Scholar 

  44. I. Smokovych, G. Hasemann, M. Krüger and M. Scheffler, Journal of the European Ceramic Society 37, 4559 (2017).

    Article  CAS  Google Scholar 

  45. A. Soleimani-Dorcheh, Oxidation-nitridation of chromium at high temperatures and its mitigation by alloying. Ph.D. thesis, RWTH Aachen, (Lehrstuhl und Institut für Eisenhüttenkunde, 2017). RWTH-2017-02157.

  46. J. Yuan, S. Hapis, H. Breitzke, Y. Xu, C. Fasel, H.-J. Kleebe, G. Buntkowsky, R. Riedel and E. Ionescu, Inorganic Chemistry 53, 10443 (2014).

    Article  CAS  Google Scholar 

  47. K. N. Strafford, Corrosion Science 19, 49 (1979).

    Article  CAS  Google Scholar 

  48. A. S. Dorcheh, M. Schütze and M. C. Galetz, Corrosion Science 130, 261 (2018).

    Article  CAS  Google Scholar 

  49. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  CAS  Google Scholar 

  50. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion. (ASM international, 2002).

  51. L. Royer, X. Ledoux, S. Mathieu and P. Steinmetz, Oxidation of Metals 74, 79 (2010).

    Article  CAS  Google Scholar 

  52. J. Yuan, D. Li, K. E. Johanns, C. Fasel, K. Durst, H.-J. Kleebe, Z. Shen, R. Riedel and E. Ionescu, Journal of the European Ceramic Society 37, 5157 (2017).

    Article  CAS  Google Scholar 

  53. G. Gregori, H.-J. Kleebe, D. W. Readey and G. D. Sorarù, Journal of the American Ceramic Society 89, 1699 (2006).

    Article  CAS  Google Scholar 

  54. H.-J. Kleebe, K. Nonnenmacher, E. Ionescu and R. Riedel, Journal of the American Ceramic Society 95, 2290 (2012).

    Article  CAS  Google Scholar 

  55. K. Nonnenmacher, H.-J. Kleebe, J. Rohrer, E. Ionescu and R. Riedel, Journal of the American Ceramic Society 96, 2058 (2013).

    Article  CAS  Google Scholar 

  56. Q. Wen, R. Riedel and E. Ionescu, Corrosion Science 145, 191 (2018).

    Article  CAS  Google Scholar 

  57. Q. Wen, R. Riedel and E. Ionescu, Advanced Engineering Materials 21, 1800879 (2019).

    Article  Google Scholar 

  58. G. Hultquist, B. Tveten and E. Hörnlund, Oxidation of Metals 54, 1 (2000).

    Article  CAS  Google Scholar 

  59. M. Michalik, M. Hänsel, and W. J. Quadakkers, Effect of water vapour on growth and adherence of chromia scales on pure chromium. Ph.D. thesis, (Forschungszentrum Jülich, Zentralbibliothek, 2007).

  60. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  CAS  Google Scholar 

  61. M. S. Li and P. Y. Hou, Acta Materialia 55, 443 (2007).

    Article  CAS  Google Scholar 

  62. F. Czerwinski and W. W. Smeltzer, Oxidation of Metals 40, 503 (1993).

    Article  CAS  Google Scholar 

  63. K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz and G. J. Yurek, Journal of the Electrochemical Society 134, 3207 (1987).

    Article  CAS  Google Scholar 

  64. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high temperature oxidation of metals, (Cambridge University Press, 2006).

  65. G. J. Yurek, K. Przybylski and A. J. Garratt-Reed, Journal of the Electrochemical Society 134, 2643 (1987).

    Article  CAS  Google Scholar 

  66. S. Chevalier, G. Bonnet, K. Przybylski, J. C. Colson and J. P. Larpin, Oxidation of Metals 54, 527 (2000).

    Article  CAS  Google Scholar 

  67. A. Ul-Hamid, Oxidation of Metals 58, 23 (2002).

    Article  CAS  Google Scholar 

  68. A. Solimani, M. Schütze, A. Stark, Andreas and M. C. Galetz, Corrosion Science 145, 180 (2018).

    Article  CAS  Google Scholar 

  69. J. Klöwer and J.-G. Li, Materials and Corrosion 47, 545 (1996).

    Article  Google Scholar 

  70. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia 77, 29 (2014).

    Article  CAS  Google Scholar 

  71. A. Soleimani-Dorcheh, W. Donner and M. C. Galetz, Materials and Corrosion 65, 1143 (2014).

    Article  CAS  Google Scholar 

  72. P. Y. Hou and J. Stringer, Journal of the Electrochemical Society 134, 1836 (1987).

    Article  CAS  Google Scholar 

  73. P. Y. Hou, Z. R. Shui, G. Y. Chuang and J. Stringer, Journal of The Electrochemical Society 139, 1119 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Melanie Thalheimer and Dr. Gerald Schmidt from High Temperature Materials Group, DECHEMA-Forschungsinstitut, for SEM and EPMA measurements and Bastien Burek from Chemical Technology Group, DECHEMA-Forschungsinstitut, for the assistance in sputtering of the reactive elements. Cong Zhou and Ying Zhan from the Dispersive Solids Group, TU Darmstadt, are thanked for their help with precursor sample preparation. The authors would also like to express their gratitude to the Plansee Group for providing chromium used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke S. Ulrich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant GA 1704/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, A.S., Kaiser, T., Ionescu, E. et al. Reactive Element Effect Applied by Alloying and SiHfBCN Coating on the Oxidation of Pure Chromium. Oxid Met 92, 281–302 (2019). https://doi.org/10.1007/s11085-019-09926-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09926-w

Keywords

Navigation