Skip to main content
Log in

Oxide Dispersion Strengthened Bond Coats with Higher Alumina Content: Oxidation Resistance and Influence on Thermal Barrier Coating Lifetime

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of the bond coat in thermal barrier coating systems has significant influence on thermal cycling performance of the protective coating. In this study, the influence of varying the alumina content of plasma-sprayed oxide dispersion strengthened bond coats with CoNiCrAlY matrix material on the oxidation resistance was analysed by thermogravimetric analysis, SEM and TEM. Yttrium ions at the alumina scale grain boundaries and the grain size in the scale appear as major factors influencing oxidation properties. The ODS material with 2, 10 and 30 wt% alumina content was applied in TBC systems as an additional thin bond coat. The thermal cycling performance of those advanced TBC systems, in burner rig tests, was evaluated with respect to the ODS material properties. Thermal cycling behaviour is in good correlation with the isothermal oxidation resistance. All results indicate that TBC systems with 10 wt% alumina content in the ODS bond coat have a superior thermal cycling performance, as compared to ODS bond coats with lower or higher alumina content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Nordhorn, R. Mücke, D. E. Mack, nd R. Vaßen, Mechanics of Materials 93, 199–208 (2016).

    Article  Google Scholar 

  2. M. Martena, D. Botto, P. Fino, S. Sabbadini, M. M. Gola, and C. Badini, Engineering Failure Analysis 13, 409 (2006).

    Article  CAS  Google Scholar 

  3. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  4. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Materials at High Temperatures 13, 3 (1995).

    Article  CAS  Google Scholar 

  5. C. Vorkötter, D. E. Mack, O. Guillon, and R. Vaßen, Surface and Coatings Technology 361, 150 (2019).

    Article  Google Scholar 

  6. D. Delaunay and A. M. Huntz, Journal of Materials Science 17, 2027 (1982).

    Article  CAS  Google Scholar 

  7. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Journal of the American Ceramic Society 81, 305 (1998).

    Article  CAS  Google Scholar 

  8. B. A. Pint, K. L. More, I. G. Wright, Materials at High Temperatures 20, 375 (2003).

    Article  CAS  Google Scholar 

  9. K. A. Unocic, J. Bergholz, T. Huang, D. Naumenko, B. A. Pint, R. Vaßen, and W. J. Quadakkers, Materials at High Temperatures 35, 108 (2017).

    Article  Google Scholar 

  10. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London A 295, 309 (1980).

    Article  CAS  Google Scholar 

  11. B. A. Pint (ed.), Progress in Understanding the Reactive Element Effect Since the Whittle and Stringer Literature Review, (ASM International Materials Park, Ohio, 2003).

    Google Scholar 

  12. B. A. Pint, K. L. More, I. G. Wright, and P. F. Tortorelli, Materials at High Temperatures 17, 165 (2000).

    Article  CAS  Google Scholar 

  13. B. A. Pint, Oxidation of Metals 45, 1 (1996).

    Article  CAS  Google Scholar 

  14. A. Gil, D. Naumenko, R. Vassen, J. Toscano, M. Subanovic, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 204, 531 (2009).

    Article  CAS  Google Scholar 

  15. E. Hejrani, D. Sebold, W. J. Nowak, G. Mauer, D. Naumenko, R. Vaßen, and W. J. Quadakkers, Surface and Coatings Technology 313, 191 (2017).

    Article  CAS  Google Scholar 

  16. J. Toscano, R. Vaβen, A. Gil, M. Subanovic, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 201, 3906 (2006).

    Article  CAS  Google Scholar 

  17. J. Bergholz, Herstellung und Charakterisierung oxiddispersionsverstärkter Haftvermittlerschichten. Dissertation (2016).

  18. T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W. J. Quadakkers, Materials at High Temperatures 2, 97 (2018).

    Article  Google Scholar 

  19. R. Vaßen, S. Giesen, and D. Stöver, Journal of Thermal Spray Technology 18, 835 (2009).

    Article  Google Scholar 

  20. J. Bergholz, B. A. Pint, K. A. Unocic, and R. Vaßen, Journal of Thermal Spray Technology 26, 868 (2017).

    Article  CAS  Google Scholar 

  21. P. J. Terberger, Alterung von Vakuum-plasmagespritzten MCrAlY-Schutzschichten und ihre Wechselwirkung mit Nickel- und Cobalt y-y’ mbasierten Superlegierungen. Dissertation (2015).

  22. F. Traeger, R. Vaßen, K.-H. Rauwald, and D. Stöver, Advanced Engineering Materials 5, 429 (2003).

    Article  Google Scholar 

  23. H.-J. Rätzer-Scheibe and U. Schulz, Surface and Coatings Technology 201, 7880 (2007).

    Article  Google Scholar 

  24. B. A. Pint, Journal of the American Ceramic Society 86, 686 (2003).

    Article  CAS  Google Scholar 

  25. D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, W. J. Quadakkers, Materials Transactions, 43, 168 (2002).

    Article  CAS  Google Scholar 

  26. T. A. Ramanarayanan, Journal of the Electrochemical Society 131, 923 (1984).

    Article  CAS  Google Scholar 

  27. M. Subanovic, D. Sebold, R. Vassen, E. Wessel, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Materials and Corrosion 59, 463 (2008).

    Article  CAS  Google Scholar 

  28. F. Naeimi, M. R. Rahimipour, and M. Salehi, Oxidation of Metals 86, 59 (2016).

    Article  CAS  Google Scholar 

  29. A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 201, 3824 (2006).

    Article  CAS  Google Scholar 

  30. F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano, and J. M. Schoenung, Surface and Coatings Technology 185, 228 (2004).

    Article  CAS  Google Scholar 

  31. N. Czech, M. Juez-Lorenzo, V. Kolarik, and W. Stamm, Surface and Coatings Technology 108109, 36 (1998).

    Article  Google Scholar 

  32. D. Naumenko, V. Shemet, L. Singheiser, and W. J. Quadakkers, Journal of Materials Science 44, 1687 (2009).

    Article  CAS  Google Scholar 

  33. F. Traeger, M. Ahrens, R. Vaßen, and D. Stöver, Materials Science and Engineering: A 358, 255 (2003).

    Article  Google Scholar 

  34. S. Rezanka, G. Mauer, and R. Vaßen, Journal of Thermal Spray Technology 23, 182 (2014).

    Article  CAS  Google Scholar 

  35. R. Vaßen, F. Traeger, and D. Stöver, International Journal of Applied Ceramic Technology 1, 351 (2004).

    Article  Google Scholar 

  36. N. P. Padture, M. Gell, and E. H. Jordan, Science (New York, N.Y.) 296, 280 (2002).

  37. W. Nowak, D. Naumenko, G. Mor, F. Mor, D. E. Mack, R. Vassen, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 260, 82 (2014).

    Article  CAS  Google Scholar 

  38. K. Schlichting, N. Padture, E. Jordan, and M. Gell, Materials Science and Engineering: A 342, 120 (2003).

    Article  Google Scholar 

  39. C. Nordhorn, R. Mücke, and R. Vaßen, Surface and Coatings Technology 258, 181 (2014).

    Article  CAS  Google Scholar 

  40. V. K. Tolpygo and D. R. Clarke, Acta Materialia 52, 5115 (2004).

    CAS  Google Scholar 

  41. J. F. Knott, Fundamentals of fracture Mechanics, (Pe Men Book Co, Taipei, 1981).

    Google Scholar 

Download references

Acknowledgements

This work was funded by SFB-Transregio 103 (project number B6). We thank our cooperation partners for the supply of the single-crystal superalloy material. A big thanks goes to Dr. Aleksander Kostka and colleagues at MPI Düsseldorf for the high-resolution TEM element mappings. The authors acknowledge the contribution of the following colleagues in our Institute: Mr. Ralf Laufs, Mr. Frank Kurze and Mr. Karl-Heinz Rauwald for the invaluable assistance during plasma spraying and Mr. Martin Tandler for the effort with the cyclic burner rig tests. We also would like to thank Dr. Doris Sebold for SEM analysis and assistance and our colleagues at ZEA-3, Forschungszentrum Jülich, Germany, who performed the chemical analysis. Further thanks goes to Mr. Friedel Gormann who performed the thermal capacity and diffusivity measurements, as well as to Marie-Theres Gerhards for the thermal expansion coefficient measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vorkötter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorkötter, C., Hagen, S.P., Pintsuk, G. et al. Oxide Dispersion Strengthened Bond Coats with Higher Alumina Content: Oxidation Resistance and Influence on Thermal Barrier Coating Lifetime. Oxid Met 92, 167–194 (2019). https://doi.org/10.1007/s11085-019-09931-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09931-z

Keywords

Navigation