Skip to main content
Log in

Effects of Cu/Al Mass Ratio and Hydrothermal Aging Temperature on Catalytic Performance of Cu/SAPO-18 for the NH3-SCR of NO in Simulated Diesel Exhaust

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The Cu/SAPO-18 samples with different Cu/Al mass ratios were prepared, their catalytic activities for the NH3-SCR of NO in simulated diesel exhaust were evaluated, and effects of Cu/Al mass ratio and hydrothermal aging temperature on catalytic performance of Cu/SAPO-18 was examined. Physicochemical properties of the samples were characterized by means of various techniques. It is found that the activity of the sample changed with a rise in Cu/Al mass ratio, with the highest overall activity being achieved over the sample with a Cu/Al mass ratio of 0.045. The H2-TPR results indicate that the Cu/Al mass ratio could affect the distribution of Cu species, and the Cu/SAPO-18-0.045 sample possessed the highest amount of the isolated Cu2+ species. BET and XRD results reveal that the Cu/Al mass ratio exerted little effect on the structure of the sample. Low-temperature hydrothermal treatment had the least influence on the sample, and the effect of high-temperature hydrothermal treatment on the sample became increasingly obvious with a rise in hydrothermal treatment temperature. It is concluded that the hydrothermal aging treatment mainly affected the sample by destroying the structure, blocking the pores, migration and transformation of the Cu species, and changing the acidic sites of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Han S, Ye Q, Cheng S, Kang T, Dai H (2017) Catal Sci Technol 7:73–717

    Google Scholar 

  2. Wang J, Zhao H, Haller G, Li Y (2017) Appl Catal B 202:346–354

    CAS  Google Scholar 

  3. Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500–511

    CAS  Google Scholar 

  4. Chen Z, Fan C, Pang L, Ming S, Guo W, Liu P, Chen H, Li T (2018) Chem Eng J 348:608–617

    CAS  Google Scholar 

  5. Han S, Cheng J, Zheng C, Ye Q, Cheng S, Kang T, Dai H (2017) Appl Surf Sci 419:382–392

    CAS  Google Scholar 

  6. Awate V, Tiwari R, Shrivastava AK, Dubey N, Dubey V (2018) J Mater Sci 29:4391–4401

    CAS  Google Scholar 

  7. Putluru SSR, Schill L, Mossin S, Jensen AD, Fehrmann R (2014) Catal Lett 144:1170–1177

    CAS  Google Scholar 

  8. Xu W, Zhang G, Chen H, Zhang G, Han Y, Chang Y, Gong P (2018) Chinese J Catal 39:118–127

    CAS  Google Scholar 

  9. Xia Y, Zhan W, Guo Y, Guo Y, Lu G (2016) Chinese J Catal 37:2069–2078

    CAS  Google Scholar 

  10. Yuan E, Wu G, Dai W, Guan N, Li L (2017) Catal Sci Technol 7:3036–3044

    CAS  Google Scholar 

  11. Leistner K, Brüsewitz F, Wijayanti K, Kumar A, Kamasamudram K, Olsson L (2017) Energies 10:489

    Google Scholar 

  12. Yu T, Wang J, Shen M, Li W (2013) Catal Sci Technol 3:3234–3241

    CAS  Google Scholar 

  13. Yu T, Fan D, Hao T, Wang J, Shen M, Li W (2014) Chem Eng J 243:159–168

    CAS  Google Scholar 

  14. Martinez-Franco R, Moliner M, Corma A (2014) J Catal 319:36–43

    CAS  Google Scholar 

  15. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) Appl Catal B 165:438–445

    CAS  Google Scholar 

  16. Feng X, Lin Q, Cao Y, Zhang H, Li Y, Xu H, Lin C, Chen Y (2017) J Taiwan Inst Chem E 80:805–812

    CAS  Google Scholar 

  17. Delahay G, Kieger S, Tanchoux N, Trens P, Coq B (2004) Appl Catal B 52:251–257

    CAS  Google Scholar 

  18. Wang J, Fan D, Yu T, Wang J, Hao T, Hu X, Shen M, Li W (2015) J Catal 322:84–90

    CAS  Google Scholar 

  19. Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Micropor Mesopor Mat 57:157–168

    CAS  Google Scholar 

  20. Gao F, Washton NM, Wang Y, Kollar M, Szanyi J, Peden CHF (2015) J Catal 331:25–38

    CAS  Google Scholar 

  21. Song J, Wang Y, Walter ED, Washton NM, Mei D, Kovarik L, Engelhard MH, Prodinger S, Wang Y, Peden CHF, Gao F (2017) ACS Catal 7:8214–8227

    CAS  Google Scholar 

  22. Albarracin-Caballero JD, Khurana I, Di Iorio JR, Shih AJ, Schmidt JE, Dusselier M, Davis ME, Yezerets A, Miller JT, Ribeiro FH, Gounder R (2017) React Chem Eng 2:168–179

    CAS  Google Scholar 

  23. Zhang R, McEwen J, Kollar M, Gao F, Wang Y, Szanyi J, Peden CHF (2014) ACS Catal 4:4093–4105

    CAS  Google Scholar 

  24. Wang J, Liu Z, Feng G, Chang L, Bao W (2013) Fuel 109:101–109

    CAS  Google Scholar 

  25. Zhou J, Xia QH, Shen SC, Kawi S, Hidajat K (2004) J Catal 225:128–137

    CAS  Google Scholar 

  26. Xue H, Guo X, Wang S, Sun C, Yu J, Mao D (2018) Catal Commun 112:53–57

    CAS  Google Scholar 

  27. Lai S, Meng D, Zhan W, Guo Y, Guo Y, Zhang Z, Lu G (2015) RSC Adv 5:90235–90244

    CAS  Google Scholar 

  28. Delahay G, Coq B, Broussous L (1997) Appl Catal B 12:49–59

    CAS  Google Scholar 

  29. Chen B, Xu R, Zhang R, Liu N (2014) Environ Sci Technol 48:13909–13916

    CAS  PubMed  Google Scholar 

  30. Niu C, Shi X, Liu F, Liu K, Xie L, You Y, He H (2016) Chem Eng J 294:254–263

    CAS  Google Scholar 

  31. Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29

    CAS  Google Scholar 

  32. Leistner K, Kumar A, Kamasamudram K, Olsson L (2018) Catal Today 307:55–64

    CAS  Google Scholar 

  33. Pereda-Ayo B, De La Torre U, Jose Illan-Gomez M, Bueno-Lopez A, Gonzalez-Velasco JR (2014) Appl Catal B 147:420–428

    CAS  Google Scholar 

  34. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 289:272

    CAS  Google Scholar 

  35. Da Costa P, Moden B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601

    Google Scholar 

  36. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B 127:137–147

    CAS  Google Scholar 

  37. Wang D, Zhang L, Li J, Kamasamudram K, Epling WS (2014) Catal Today 231:64–74

    CAS  Google Scholar 

  38. Liu X, Wu X, Weng D, Si Z, Ran R (2017) Catal Today 281:596–604

    CAS  Google Scholar 

  39. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng YZ (2009) Appl Catal A 364:48–56

    CAS  Google Scholar 

  40. Kieger S, Delahay G, Coq B, Neveu B (1999) J Catal 183:267–280

    CAS  Google Scholar 

  41. Li Y, Deng J, Song W, Liu J, Zhao Z, Gao M, Wei Y, Zhao L (2016) J Phys Chem C 120:14669–14680

    CAS  Google Scholar 

  42. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) ACS Catal 3:871–881

    CAS  Google Scholar 

  43. Zhu H, Kwak JH, Peden CHF, Szanyi J (2013) Catal Today 205:16–23

    CAS  Google Scholar 

  44. Ming S, Chen Z, Fan C, Pang L, Guo W, Albert KB, Liu P, Li T (2018) Appl Catal A: General 559:47–56

    CAS  Google Scholar 

  45. Ma J, Li Y, Liu J, Zhao Z, Xu C, Wei Y, Song W, Sun Y, Zhang X (2019) Ind Eng Chem Res 58:2389–2395

    CAS  Google Scholar 

  46. Gao F, Peden CHF (2018) Catalysts 8

  47. Kim YJ, Lee JK, Min KM, Hong SB, Nam I, Cho BK (2014) J Catal 311:447–457

    CAS  Google Scholar 

  48. Fan C, Chen Z, Pang L, Ming S, Dong C, Albert KB, Liu P, Wang J, Zhu D, Chen H, Li T (2018) Chem Eng J 334:344–354

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005), National Key Research and Development Program of China (Grant No. 2017YFC0209905), and Natural Science Foundation of Beijing (Grant No. 8082008). We also thank Prof. Ralph T. Yang (The University of Michigan) for his helpful discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Ye or Hongxing Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Ye, Q., Han, S. et al. Effects of Cu/Al Mass Ratio and Hydrothermal Aging Temperature on Catalytic Performance of Cu/SAPO-18 for the NH3-SCR of NO in Simulated Diesel Exhaust. Catal Surv Asia 23, 344–356 (2019). https://doi.org/10.1007/s10563-019-09283-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09283-3

Keywords

Navigation