Skip to main content
Log in

Surfactant-Free Synthesis of Single-Crystalline Bi4Ti3O12 Nanosheets with Excellent Visible-Light Photocatalytic Activity

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Single-crystalline Bi4Ti3O12 nanosheets with a thickness less than 10 nm and a lateral size larger than 20 μm have successfully synthesized via a surfactant-free hydrothermal route by employing K2Ti6O13 nanofibers prepared in advance as titanium sources. The as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, respectively. The results revealed that the single-crystalline Bi4Ti3O12 nanosheets are dominated with (010) facets. In general, the slow exfoliation of TiO6 octahedron lamella and the fast combination of the subnitrate radicals with the Bi3+ ions situated in (010) planes induce the crystallization of the single-crystalline Bi4Ti3O12 nanosheets. In addition, the as-prepared single-crystalline Bi4Ti3O12 nanosheets propose a narrowed gap of ca. 2.41 eV and after modified by Pt-quantum-dots exhibit excellent visible-light photocatalytic activity. It is believed that the surfactant-free in the hydrothermal system induce more amount of surface state responsible for the narrowed gap and the excellent visible-light photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gratzel M (2001) Nature 414:338–344

    CAS  PubMed  Google Scholar 

  2. Sonawane RS, Dongare MK (2006) J Mol Catal A 243:68–76

    CAS  Google Scholar 

  3. Min Z, Xiong WL, Xie YI (2013) Nano Today 8:598–618

    Google Scholar 

  4. Ong ST, Keng PS, Lee WN, Ha ST, Hung YT (2011) Water 3:157–176

    CAS  Google Scholar 

  5. Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Chem Rev 115:10307–10377

    CAS  PubMed  Google Scholar 

  6. Li SH, Zhang N, Xie X, Luque R, Xu YJ (2018) Angew Chem Int Ed 57:13082–13085

    CAS  Google Scholar 

  7. Adesina AA (2004) Catal Surv Asia 8(4):265–273

    CAS  Google Scholar 

  8. Hong X, Wang Z, Cai W, Feng L, Zhang J, Yang Y, Ma N, Liu Y (2005) Chem Mater 17:1548–1552

    CAS  Google Scholar 

  9. Song B, Yin W, Wang L, Li Z, Xiong Y (2016) RSC Adv 6:57446

    Google Scholar 

  10. Awazu K, Fujimaki M, Rockatuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676–1680

    CAS  PubMed  Google Scholar 

  11. Liu Y, Zhu G, Gao J (2017) Appl Catal B 200:72–82

    CAS  Google Scholar 

  12. Wang C, Thompson RL, Ohodnicki P, Baltrus J, Matranga C (2011) J Mater Chem 21:13452

    CAS  Google Scholar 

  13. Zhang J, Huang L, Liu P, Yan W, Jiang X, Zhang E, Wang HB, Kong Z, Xi JH, Ji ZG (2016) Alloys Compd 654:71–78

    CAS  Google Scholar 

  14. Karlsson K, Boixel J, Pellegrin Y, Blart E, Becker HC, Odobel F, Hammarström L (2010) J Am Chem Soc 132:17977–17979

    CAS  PubMed  Google Scholar 

  15. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Chem Lett 33:1348–1349

    CAS  Google Scholar 

  16. Wang X, Liu G, Wang L, Chen ZG, Lu GQM, Cheng HM (2012) Adv Energy Mater 2:42–46

    Google Scholar 

  17. Huang HW, Cao RR, Yu SX, Xu K, Hao WC, Wang YG, Dong F, Zhang TR, Zhang YH (2017) Appl Catal B 219:526–537

    CAS  Google Scholar 

  18. Chala S, Wetchakun K, Phanichphant S, Inceesungvorn B, Wetchakun N (2014) J Alloys Compd 597:129–135

    CAS  Google Scholar 

  19. Jiang J, Zhao K, Xiao X, Zhang L (2012) J Am Chem Soc 134:4473–4476

    CAS  PubMed  Google Scholar 

  20. Zhou Y, Zhang Y, Lin M, Long J, Zhang Z, Lin HX, Wu JCS, Wang XX (2015) Nat Commun 6:8340

    PubMed  PubMed Central  Google Scholar 

  21. Wei W, Dai Y, Huang B (2009) J Phys Chem C 113:5658–5663

    CAS  Google Scholar 

  22. Cummins SE, Cross LE (1967) Appl Phys Lett 10:14–16

    CAS  Google Scholar 

  23. Stojanovic BD, Paivasantos CO, Cilense M, Jovalekic C, Lazarevic ZZ (2008) Mater Res Bull 43:1743–1753

    CAS  Google Scholar 

  24. Katayama S, Noguchi Y, Miyayama M (2007) Adv Mater 19:2552–2555

    CAS  Google Scholar 

  25. Shen ZJ, Liu J, Grins J, Nygren M, Wang PL, Kan YM, Yan HX, Sutter U (2005) Adv Mater 17:676

    CAS  Google Scholar 

  26. Cao TP, Li YJ, Wang C, Zhang ZY, Zhang MY, Shao CL, Liu YC (2011) J Mater Chem 21:6922

    CAS  Google Scholar 

  27. Zhao W, Jin Y, Gao CH, Gu W, Jin ZM, Lei YL, Liao LS (2014) Mater Chem Phys 143:952–962

    CAS  Google Scholar 

  28. Weng B, Xu F, Xu J (2014) RSC Adv 4:56682

    CAS  Google Scholar 

  29. Chen Z, Jiang X, Zhu C, Shi C (2016) Appl Catal B 199:241–251

    CAS  Google Scholar 

  30. Zhao Y, Fan H, Ke F, Ma L, Li M, Fang J (2016) Int J Hydrog Energy 41:16913–16926

    CAS  Google Scholar 

  31. Xue L, Guan L (2012) Acta Phys Chim Sin 28:1481–1488

    Google Scholar 

  32. Chen Z, Hong J, Jin W, Shi C (2016) Appl Catal B 180:698–706

    CAS  Google Scholar 

  33. Zhao X, Yang H, Li S, Cui Z, Zhang C (2018) Mater Res Bull 107:180–188

    CAS  Google Scholar 

  34. Tu S, Huang H, Zhang T, Zhang Y (2017) Appl Catal B 219:550–562

    CAS  Google Scholar 

  35. Hou D, Luo W, Huang Y, Yu JC, Hu X (2013) Nanoscale 5:2028–2035

    CAS  PubMed  Google Scholar 

  36. Yao WF, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Shang SX, Huang BB (2004) J Appl Phys 52:109–116

    CAS  Google Scholar 

  37. He HQ, Yin J, Li YX, Zhang Y, Qiu HS, Xu JB, Xu T, Wang CY (2014) Appl Catal B 156–157:35–43

    Google Scholar 

  38. Zhang H, Liang Y, Zhu Y, Liu S, Li K, Yang J (2018) J Alloys Compd 767:1030–1040

    CAS  Google Scholar 

  39. Xu G, Yang YR, Bai HW, Wang JW, Tian H, Zhao RY, Wei X, Yang X, Han GR (2016) CrystEngComm 18:2268

    CAS  Google Scholar 

  40. Sun XL, Xu G, Bai HW, Zhao YG, Tian H, Wang JW, Li X, Han GR (2017) J Cryst Growth 476(2017):31–37

    CAS  Google Scholar 

  41. Deng SQ, Xu G, Bai HW, Li LL, Jiang S, Shen G, Han GR (2014) Inorg Chem 53:10937–10943

    CAS  PubMed  Google Scholar 

  42. Tang JW, Zou ZG, Ye JH (2003) J Phys Chem B 107:14265–14269

    CAS  Google Scholar 

  43. Goto T, Noguchi Y, Soga M, Miyayama MT (2005) Mater Res Bull 40:1044–1051

    CAS  Google Scholar 

  44. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) J Phys Chem B 210:5845–5851

    Google Scholar 

  45. Zhang C, Zhu Y (2005) Chem Mater 17:3537–3545

    CAS  Google Scholar 

  46. Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612–7622

    CAS  Google Scholar 

  47. Tan C, Zhu G, Hojamberdiev M, Okada K, Jia L, Luo X, Liu P (2014) Appl Catal B 152–153:425–436

    Google Scholar 

  48. Morales W, Cason M, Aina O, Tacconi NR, Rajeshwar K (2008) J Am Chem Soc 130:6318–6319

    CAS  PubMed  Google Scholar 

  49. Leite ER, Santos LPS, Carrenno NLV, Longo E, Paskocimas CA, Varela JA, Lanciotti F (2001) Appl Phys Lett 78(15):2148–2150

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Zhejiang Natural Science Foundation, China, under Grant No. LY18E020001, and National Natural Science Foundation of China, under Grant No. 51602282.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Gang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Chen, T., Yang, X. et al. Surfactant-Free Synthesis of Single-Crystalline Bi4Ti3O12 Nanosheets with Excellent Visible-Light Photocatalytic Activity. Catal Surv Asia 23, 322–331 (2019). https://doi.org/10.1007/s10563-019-09279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09279-z

Keywords

Navigation