Skip to main content
Log in

Anchored Silicotungstates: Effect of Supports on Catalytic Activity

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this review, we have summarized the work carried out on anchored silicotungstates, an upcoming important field of heterogeneous catalysis. Relation between the structural diversity, especially geometry of the supports, and acid catalysed reactions have been discussed by taking some case studies. It was found that the structure geometry of the supports plays an important role towards the activity as well as selectivity of the products.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Narkhede N, Singh S, Patel A (2015) Green Chem 17:89–107

    CAS  Google Scholar 

  2. Patel A, Narkhede N, Singh S, Pathan S (2016) Catal Rev 58:337–370

    CAS  Google Scholar 

  3. Pope MT (1983) Inorganic chemistry concepts, vol 8. Heteropoly and isopoly oxometalates. Springer, Berlin

    Google Scholar 

  4. Okhuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Google Scholar 

  5. Kozhevnikov IV (1998) Chem Rev 98:171

    CAS  PubMed  Google Scholar 

  6. Pope MT, Muller A (eds) (2001) Polyoxometalate chemistry: from topology via self-assembly to applications. Kluwer, Dordrecht

    Google Scholar 

  7. Keggin JF (1933) Nature 131:908

    CAS  Google Scholar 

  8. Teze A, Herve G (1990) Inorg Synth 27:85

    CAS  Google Scholar 

  9. Weinstock IA (1998) Chem Rev 98:113

    CAS  PubMed  Google Scholar 

  10. Sadakane M, Steckhan E (1998) Chem Rev 98:219

    CAS  PubMed  Google Scholar 

  11. Proust A, Thouvenot R, Gouzerh P (2008) ChemCommun 1837–1852

  12. Pope MT, Muller A (2003) Polyoxometalate molecular science. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  13. Kozhevnikov IV (2002) Catalysts for fine chemicals synthesis: catalysis by polyoxometalates. Wiley, Chichester

    Google Scholar 

  14. Marignac C (1864) Ann Chim Phys 3:5

    Google Scholar 

  15. Souchay P, Teze A, Herve G, Acad CR (1972) Sci Paris Ser C 275:1013

    Google Scholar 

  16. Matsumoto K, Sasaki Y (1976) Bull Chem Soc Jpn 49:156

    CAS  Google Scholar 

  17. Teze A, Herve G (1977) J Inorg Nucl Chem 39:999

    CAS  Google Scholar 

  18. Canny J, Teze A, Thouvenot R, Hervé G (1986) Inorg Chem 25:2114

    CAS  Google Scholar 

  19. Nozaki C, Kiyoto I, Minai Y, Misono M, Mizuno N (1999) Inorg Chem 38:5724

    CAS  Google Scholar 

  20. Schroden RC, Blanford CF, Melde BJ, Johnson BJS, Stein A (2001) Chem Mater 13:1074

    CAS  Google Scholar 

  21. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964

    CAS  PubMed  Google Scholar 

  22. Mizuno N, Yamaguchi K, Kamata K (1944) Coord Chem Rev 2005:249

    Google Scholar 

  23. Botar B, Geletii YV, Kogerler P, Musaev DG, Morokuma K, Weinstock IA, Hill CL (2006) J Am Chem Soc 128:11268

    CAS  PubMed  Google Scholar 

  24. Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) J Am Chem Soc 130:5006

    CAS  PubMed  Google Scholar 

  25. Ishimoto R, Kamata K, Mizuno N (2009) Angew Chem Int Ed 48:8900

    CAS  Google Scholar 

  26. Itagaki S, Kamata K, Yamaguchi K, Mizuno N (2013) ChemCatChem 5:1725

    CAS  Google Scholar 

  27. Minato T, Suzuki K, Kamata K, Mizuno N (2014) Chem Eur J 20:5946

    CAS  PubMed  Google Scholar 

  28. Bassil BS, Kortz U (2011) Dalton Trans 40:9649

    CAS  PubMed  Google Scholar 

  29. Sadakane M, Tsukuma D, Dickman MH, Bassil BS, Kortz U, Higashijima M, Ueda W (2006) Dalton Trans 4271–4276

  30. Keita B, Kortz U, Brudna Holzle LR, Brown S, Nadjo L (2007) Langmuir 23:9531–9534

    CAS  PubMed  Google Scholar 

  31. Bassil BS, Dickman MH, von der Kammer B, Kortz U (2007) Inorg Chem 46:2452–2458

    CAS  PubMed  Google Scholar 

  32. Yoshida A, Hikichi S, Mizuno N (2007) J Organomet Chem 692:455

    CAS  Google Scholar 

  33. Phan TD, Kinch MA, Barker JE, Ren T (2005) Tetrahedron Lett 46:397

    CAS  Google Scholar 

  34. Carraro M, Sandei L, Sartorel A, Scorrano G, Bonchio M (2006) Org Lett 8:3671

    CAS  PubMed  Google Scholar 

  35. Sartorel A, Carraro M, Bagno A, Scorrano G, Bonchio M (2007) Angew Chem Int Ed 46:3255

    CAS  Google Scholar 

  36. Clark JH, Kybett AP, Maequarrie DJ (2000) Supported reagents: preparation, analysis and application. VCH Inc., New York

    Google Scholar 

  37. Hwang CY, Kwak JW, Lee WY, Lee HL (1986) Korean J Chem Eng 3:31

    CAS  Google Scholar 

  38. Richter M, Janchen J, Jerschkewitz H-G, Parlitz B, Schreier E (1991) J Chem Soc Faraday Trans 87:1461

    CAS  Google Scholar 

  39. Verhoefa MJ, Kooymanb PJ, Petersa JA, van Bekkum H (1999) Microporous Mesoporous Mater 27:365

    Google Scholar 

  40. Kamalakar G, Komura K, Kubota Y, Sugi Y (2006) J Chem Technol Biotechnol 81:981

    CAS  Google Scholar 

  41. Sawant DP, Vinu A, Mirajkar SP, Lefebvre F, Ariga K, Anandan S, Mori T, Nishimura C, Halligudi SB (2007) J Mol Catal A 271:46

    CAS  Google Scholar 

  42. Varisli D, Dogu T, Dogu G (2008) Ind Eng Chem Res 47:4071

    CAS  Google Scholar 

  43. Liu Y, Xu L, Xu B, Li Z, Jia L, Guo W (2009) J Mol Catal A 297:86

    CAS  Google Scholar 

  44. Chea P, Lu F, Zhanga J, Huanga Y, Niea X, Gaoa J, Xu J (2012) Bioresource Technol 119:433

    Google Scholar 

  45. Khayoon MS, Hameed BH (2013) Fuel Process Technol 114:12

    CAS  Google Scholar 

  46. Chen F, Ma J, Dong Z, Liu R (2014) J Nanosci Nanotechnol 14:7293

    CAS  PubMed  Google Scholar 

  47. Tayebee R, Amini MM, Akbaria M, Aliakbari A (2015) Dalton Trans 44:9596

    CAS  PubMed  Google Scholar 

  48. Chen Y, Cao Y, Suo Y, Zheng G-P, Guan X-X, Zheng X-C (2015) J Taiwan Inst Chem Eng 51:186–192

    CAS  Google Scholar 

  49. Bala DD, de Souz K, Misra M, Chidambar D (2015) J Clean Prod 104:273

    CAS  Google Scholar 

  50. Brahmkhatri V, Patel A (2011) Ind Eng Chem Res 50:13693

    CAS  Google Scholar 

  51. Brahmkhatri V, Patel A (2013) Environmentally benign catalysts based on heteropolyacids for clean organic transformations. Springer, New York

    Google Scholar 

  52. Narkhede N, Patel A (2014) J Porous Mater 21:579–588

    CAS  Google Scholar 

  53. Narkhede N, Brahmkhatri V, Patel A (2014) Fuel 135:253

    CAS  Google Scholar 

  54. Patel A, Narkhede N (2013) Catal Sci Technol 3:3317

    CAS  Google Scholar 

  55. Narkhede N, Patel A (2013) Ind Eng Chem Res 52:13637

    CAS  Google Scholar 

  56. Narkhede N, Patel A (2014) RSC Adv 4:64379

    CAS  Google Scholar 

  57. Narkhede N, Patel A (2014) RSC Adv 4:19294

    CAS  Google Scholar 

  58. Narkhede N, Patel A (2015) RSC Adv 5:52801

    CAS  Google Scholar 

  59. Narkhede N, Patel A (2016) Appl Catal A 515:154

    CAS  Google Scholar 

  60. Jansen JC, Creyghton EJ, Lan Njo S, van Koningsveld H, van Bekkum H (1997) Catal Today 38:205

    CAS  Google Scholar 

  61. Davis ME (1993) Acc Chem Res 26:111

    CAS  Google Scholar 

  62. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London

    Google Scholar 

  63. Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ (2001) Chem Mater 13:258

    CAS  Google Scholar 

  64. Perez-Pariente J, Diaz I, Mohino F, Satre E (2003) Appl Catal A 254:173

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the University Grants Commission, New Delhi (39-837/2010 (SR)). NN is thankful to CSIR, New Delhi, for the award of Senior Research Fellowship during 2014–2016, (09/114/197/2014-EMR-I). Anish Patel is thankful to BRNS (37(2)/14/34/2014-BRNS, Mumbai) for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Patel.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Narkhede, N. & Patel, A. Anchored Silicotungstates: Effect of Supports on Catalytic Activity. Catal Surv Asia 23, 257–264 (2019). https://doi.org/10.1007/s10563-019-09281-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09281-5

Keywords

Navigation