Skip to main content
Log in

ZSM-5 Zeolite Based Additive in FCC Process: A Review on Modifications for Improving Propylene Production

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Propylene is a very essential building block in the petrochemical industry. There is a fast growing in its demand that is steadily expanding its market. Fluid catalytic cracking units is the second largest propylene source for petrochemical application. FCC units are primarily used in the production of gasoline. However, refiners have taken advantage with the aim of producing and recovering large amounts of propylene from their Fluid catalytic cracking unit by raising the severity of reaction through riser temperature, installation of a propylene recovery unit and addition of a catalyst that is shape selectivity. ZSM-5 is nowadays used as a very efficient fluid catalytic cracking additive for increasing light olefins production i.e. propylene. This short review will be exclusively focused on ZSM-5-containing additives and look at the main strategies used in the design and modifications of ZSM-5 catalysts to increase the propylene production in the FCC units. The review will highlight the most important and the recent modification methods used in enhancing ZSM-5 performance in the FCC process to maximize the yield of light olefins in general, and in particular that of propylene. These methods include particle size and acidity modification, phosphorus treatment, mesoporous/hierarchical structure creation, incorporation alkali metals and some selected transition metals and introduction of rare-earth metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

adapted from [46]

Similar content being viewed by others

References

  1. Akah A, Al-Ghrami M (2015) Appl Petrochem Res 5:377

    CAS  Google Scholar 

  2. Coombs D (2016) Goldman Sachs, Houston

  3. Hussain AI, Aitani AM, Kubu M, Ceja J, Al-Khattaf S (2016) Fuel 167:226

    CAS  Google Scholar 

  4. Alotaibi Faisal M, Alotibi González-Cortésb S, Mohammed F, Xiao T, Al-Megren H, Yang G, Edward P (2018) Catal Today 317:86

    Google Scholar 

  5. Rahimi N, Karimzadeh R (2011) Appl Catal A 398:1

    CAS  Google Scholar 

  6. Vedrine JC (2016) Catalysts 6:22

    Google Scholar 

  7. Ahmadpou J, Taghizadeh M (2015) J Nat Gas Sci Eng 23:184

    Google Scholar 

  8. Grubbs RH (2004) Tetrahedron 60(34):7117

    CAS  Google Scholar 

  9. Cheong A, Malashevskaya I, Yim J, Thoelke M, Gupta S, Lewandowski S, Dina T, Chen W (2016) IHS chemical world analysis—propylene. HIS

  10. Aguado J, Serrano DP, Escola JM, Garagorri E (2002) Catal Today 75:257

    CAS  Google Scholar 

  11. Aitani A, Yoshikawa T, Ino T (2000) Catal Today 60:111

    CAS  Google Scholar 

  12. Biswas J, Maxwell I (1990) Appl Catal 58:19

    CAS  Google Scholar 

  13. Degnan T, Chitnis G, Schipper P (2000) Microporous Mesoporous Mater 35–36:245

    Google Scholar 

  14. Harding R, Peters A, Nee J (2001) Appl Catal A 221:389

    CAS  Google Scholar 

  15. Olson HD, Kokotailo GT, Lawton SL, Meier WM (1981) J Phys Chem 85:2238

    CAS  Google Scholar 

  16. Sang Sh, Chang F, Liu Zh, He Ch, He Y, Xu L (2004) Catal Today 93–95:729

    Google Scholar 

  17. Corma A, Corresa E, MathieuY Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Catal Sci Technol 7:12

    CAS  Google Scholar 

  18. Buchanan J (1991) Appl Catal 74:83

    CAS  Google Scholar 

  19. Corma A, Martı́nez-Triguero J, Valencia S, Benazzi E, Lacombe S (2002) J Catal 206:125

    CAS  Google Scholar 

  20. Adewuyi Y, Klocke D, Buchanan J (1995) Appl Catal 131:121

    CAS  Google Scholar 

  21. Buchanan JS (2000) Catal Today 55:207

    CAS  Google Scholar 

  22. Siddiqui M, Aitani A, Saeed M, Al-Khattaf S (2010) Top Catal 53:1387

    Google Scholar 

  23. Den Hollander MA, Wissink M, Makkee M, Moulijn J (2002) Appl Catal A 223:85

    Google Scholar 

  24. Triantafillidis C, Evmiridis NP (1999) Ind Eng Chem Res 38:916

    CAS  Google Scholar 

  25. Corma A, Bermúdez O, Martinez C, Ortega FJ (2002) Appl Catal A 230:111

    CAS  Google Scholar 

  26. Madon RJ (1991) J Catal 129:275

    CAS  Google Scholar 

  27. Lin LF, Zhao SF, Zhang DW, Fan H, Liu YM, He MY (2015) ACS Catal 5:4048

    CAS  Google Scholar 

  28. Yarulina K, de Wispelaere S, Bsilleul J, Goetze M, Radersma E, Abou-Hamad I, Vollmer M, Goesten B, Mezari EJM, Hensen JS, Martinez-Espin M, Morten S, Mitchell J, Perez-Ramirez U, Olsbye BM, Weckhuysen V, van Speybroeck F, Kapteijn (2018) J Nat Chem 10:804

    CAS  Google Scholar 

  29. Xiaoning W, Zhen Z, Chunming X, Aijun D, Li Z, Guiyuan J (2007) J Rare Earths 27:321

    Google Scholar 

  30. Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojim T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N (2000) Catal Surv Jpn 4(2):157

    CAS  Google Scholar 

  31. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Catal Lett 81:83

    CAS  Google Scholar 

  32. Tynjälä P, Pakkanen T (1996) J Mol Catal A 110:153

    Google Scholar 

  33. Nguyen LP, Tran TV, Ngo PT, Luong TN, Xuan Vo PN, Dang TT (2019) Pet Sci Technol 37:1713

    CAS  Google Scholar 

  34. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Catal Lett 84:259

    CAS  Google Scholar 

  35. Jung JS, Park JW, Seo G (2005) Appl Catal A 288:149

    CAS  Google Scholar 

  36. Ogura M, Shinomiya SY, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Catal A 219:33

    CAS  Google Scholar 

  37. Rane N, Kersbulck M, Van Santen RA, Hensen EJM (2008) Microporous Mesoporous Mater 10:279

    Google Scholar 

  38. Konno H, Ohnaka R, Nishimura J, Tago T, Nakasaka Y, Masuda T (2014) Catal Sci Technol 4:4265

    CAS  Google Scholar 

  39. Schneider D, Mehlhorn M, Zeigermann P, Karger J, Valiullin R (2016) Chem Soc Rev 45:3439

    CAS  PubMed  Google Scholar 

  40. Ding L, Zheng Y, Hong Y, Ring Z (2007) Microporous Mesoporous Mater 101:432

    CAS  Google Scholar 

  41. Konno H, Okamura T, Nakasaka Y, Tago T, Masuda T (2012) J Jpn Petrol Inst 55:267

    CAS  Google Scholar 

  42. Mochizuki H, Yokoi T, Imai H, Watanabe R, Namba S, Kondo JN, Tatsumi T (2011) Microporous Mesoporous Mater 145:165

    CAS  Google Scholar 

  43. Fan W, Snyder MA, Kumar S, Lee PS, Yoo WC, McCormick AV, Penn RL, Stein A, Tsapatsis M (2008) Nat Mater 7:984

    CAS  PubMed  Google Scholar 

  44. Kim J, Ryoo R, Opanasenko MV, Shamzhy MV, Čejka J (2015) ACS Catal 5:2596

    CAS  Google Scholar 

  45. Wang Z, Dornath P, Chang CC, Chen H, Fan W (2013) Microporous Mesoporous Mater 181:8

    CAS  Google Scholar 

  46. Vogt ETC, Weckhuysen BM (2015) Chem Soc Rev 44:7342

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Zhong J, Wang J, Zhang L, Gao J, Liu A (2009) Fuel Process Technol 90:863

    CAS  Google Scholar 

  48. Verboekend D, Pérez-Ramírez J (2014) ChemSusChem 7:753

    CAS  PubMed  Google Scholar 

  49. Motz JL, Heinichen H, Hoelderich WF (1998) J Mol Catal A 136:175

    CAS  Google Scholar 

  50. Li X, Prins R, van Bokhoven JA (2009) J Catal 262:257

    CAS  Google Scholar 

  51. Park DH, Seong SK, Wang H, Pinnavaia TJ, Papapetrou MC, Lappas AA, Triantafyllidis KS (2009) Mesopores Angew Chem 121:7781

    Google Scholar 

  52. Siddiqui MB, Aitani AM, Saeed MR, Al-Yassir N, Al-Khattaf S (2011) Fuel 90(2):459

    CAS  Google Scholar 

  53. Dong X, Shaikh S, Vittenet JR, Wang J, Liu Z, Bhatte KD, Ali O, Xu W, Osorio I, Saih Y, Basset JM (2018) ACS Sustain Chem Eng 6:15832

    CAS  Google Scholar 

  54. Fujiwara M, Mimura N, Sato O, Yamaguchi A (2019) Microporous Mesoporous Mater 280:219

    CAS  Google Scholar 

  55. Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M (2017) Chem Soc Rev 46:389

    CAS  PubMed  Google Scholar 

  56. Blasco T, Corma A, Martínez-Triguero J (2006) J Catal 237:267

    CAS  Google Scholar 

  57. Xue N, Olindo R, Lercher J (2010) J Phys Chem C 114:15763

    CAS  Google Scholar 

  58. Van der Bij HE, Weckhuysen BM (2015) Chem Soc Rev 44:7406

    PubMed  PubMed Central  Google Scholar 

  59. Van der Bij HE (2014) Phosphatation of zeolites: a combined spectroscopy, microscopy and catalysis study, PhD thesis, Utrecht University

  60. Xue N, Chen X, Nie L, Guo X, Ding W, Chen Y, Gu M, Xie Z (2007) J Catal 248:20

    CAS  Google Scholar 

  61. Liu D, Choi WC, Lee CW, Kang NY, Lee YJ, Shin CH, Park YK (2010) Catal Today 164:154

    Google Scholar 

  62. Lin DH, Coudurier G, Vedrine JC (1989) Stud Surf Sci Catal 49:1431

    Google Scholar 

  63. Zhao G, Teng J, Xie Z, Jin W, Yang W, Chen Q, Tang JY (2007) Catalyst 248:29

    CAS  Google Scholar 

  64. Lappas AA, Triantafillidis CS, Tsagrasouli ZA, Tsiatouras VA, Vasalos IA, Evmiridis NP (2002) Stud Surf Sci Catal 142:807

    Google Scholar 

  65. Lu J, Zhao Z, Xu C, Zhang P, Duan A (2006) Catal Commun 7:199

    CAS  Google Scholar 

  66. Mohiuddin I, Mdleleni MM, Key D (2018) Appl Petrochem Res 8:119

    CAS  Google Scholar 

  67. Zhang R, Wang Z (2015) Chin J Chem Eng 23:1131

    Google Scholar 

  68. Dai L, Wang Y, Liu Y, Ruan R, Duan D, Zhao Y, Yu Z, Jiang L (2018) Bioresour Technol 272:407

    PubMed  Google Scholar 

  69. Che Q, Yang M, Wang X, Yang Q, Williams LR, Yang H, Zou J, Zeng K, Zhu Y, Chen Y, Chen H (2017) Bioresour Technol 278:248

    Google Scholar 

  70. Ji K, Sun J, Liu P, Song Q, Gao J, Zhang K, Li J (2018) J Chem Eng 26:1949

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate and thank the financial support provided by King Abdulaziz City for Science and Technology (KACST) (Project Nos. 20-0047, 20-0046, 20-0212 & 20-0206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed F. Alotibi or J. L. G. Fierro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotibi, M.F., Alshammari, B.A., Alotaibi, M.H. et al. ZSM-5 Zeolite Based Additive in FCC Process: A Review on Modifications for Improving Propylene Production. Catal Surv Asia 24, 1–10 (2020). https://doi.org/10.1007/s10563-019-09285-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09285-1

Keywords

Navigation